Úvod

Vážení zákazníci,

děkujeme vám za zakoupení produktu společnosti UNI-T. Prosprávné používání zařízení si, prosíme, pečlivě přečtěte tuto uživatelskou příručku, zvláštní pozornost pak věnujte části "Bezpečnostní pokyny".

Po prostudování uživatelskou příručku pečlivě uschovejte, nejlépe společně s přístrojem, případně na jiném, snadno přístupném místě.

Všeobecné bezpečnostní pokyny

Přístroj je navržen a vyroben přesně podle bezpečnostních požadavků pro elektrické měřicí přístroje (GB4793) a bezpečnostního standardu IEC61010-1. Přístroj splňuje standardy pro přepětí (CAT II) a bezpečnostní standardy pro třídu znečištění úrovně II. Očekává se od Vás, že se seznámíte a budete znát následující bezpečnostní opatření, aby nedošlo k poškození produktu a jakýchkoliv jiných zařízení k němu připojených. Používejte produkt v souladu s předpisy, aby se zabránilo možnému poškození.

Pouze pracovníci s odborným výcvikem mohou provádět údržbu přístroje, aby nedošlo k zranění nebo požáru. Vhodné silové vodiče by měly být použity a schváleny státem. Správné připojení vstupu / výstupu: nikdy nepřipojujte vstup / výstup když je připojena sonda nebo testovací obvod se zdrojem napětí.

Spolehlivé uzemnění přístroje: Přístroj musí být uzemněn zemnícím vodičem napájení. Zemnící vodič musí být připojen k zemi, aby se předešlo úrazu elektrickým proudem. Zkontrolujte bezpečnost uzemnění před připojením vstupních / výstupních konektorů k přístroji.

Správné připojení oscilografické sondy: Zemnící vodič má stejný potenciál jako země. Nepřipojujte zemnící vodič k vysokému napětí. Přehled jmenovitých hodnot všech konektorů: Přečtěte si všechny jmenovité hodnoty a značky uvedené na přístroji, aby nedošlo k úrazu elektrickým proudem nebo k přetížení nadměrným proudem. Před připojením jakýchkoliv zařízení si pečlivě přečtěte návod k obsluze.

Neotevírejte kryt přístroje: Není povoleno spustit nebo používat přístroj při otevřeném krytu nebo panelu.

Používejte správnou pojistku: Je dovoleno používat pouze typ pojistky, který je určen pro tento přístroj.

Zabraňte doteku neizolovaných obvodů: Není dovoleno dotýkat se nezaizolovaných konektorů nebo částí obvodu po zapnutí napájení.

Provoz přístroje není povolen, pokud existuje pochybnost o bezchybné funkci přístroje: Obraťte se na kvalifikované pracovníky údržby a nechte přístroj zkontrolovat, zda není poškozen.

Přístroji musí být zajištěna dostatečná ventilace: Není dovoleno pracovat ve vlhkých místech. Není dovoleno pracovat v hořlavých a výbušných prostředích. Udržujte povrch výrobku čistý a suchý.

Bezpečnostní symboly a upozornění

V této uživatelské příručce mohou být uvedena následující varování a upozornění:

Varování: upozorňuje na situace a činnosti, během kterých může dojít k ohrožení života.

Upozornění: upozorňuje na situace a činnosti, během kterých může dojít k poškození majetku.

Upozornění vztahující se k přístroji:

- Nebezpečí: označuje vysoké riziko vzniku zranění.
- Varování: označuje možné riziko vzniku zranění.
- Poznámka: označuje riziko poškození přístroje a ostatního majetku.

Symboly uvedené na přístroji:

Následující symboly se mohou vyskytovat na povrchu přístroje.

Vysoké napětí

Pozor! Viz uživatelska příručka

 \mathbb{H}

Ochranné uzemnění

Uzemnění kostry

Model UTD2000/3000: NÁVOD K POUŽITÍ

Předmluva

Návod obsahuje informace o použití digitálního oscilografu UTD2000/3000. návod obsahuje tyto kapitoly:

- Kapitola 1: Návod k použití: Úvod k funkcím digitálního osciloskopu a pokyny pro snadnou instalaci
- Kapitola 2: Nastavení přístroje: Provozní pokyny pro obsluhu digitálního osciloskopu UTD2000/3000
- Kapitola 3: Příklady použití: Příklady pro vyřešení různých problémů měření
- Kapitola 4: Systémová hlášení a řešení problémů
- Kapitola 5: Příloha A: Technická specifikace
 - Příloha B: Příslušenství digitálního osciloskopu UTD2000/3000
 - Příloha C: Údržba a čištění

Tato uživatelská příručka je platná pro tři modelové řady digitálních osciloskopů s možností ukládání informací. Detailní informace o příslušných modelech osciloskopů naleznete v následující tabulce:

Série		Model	Šířka pásma	Vzorkování v reálném čase
	UTD2000C/3000C	UTD2025C/UTD3025C	25MHz	250MS/s
		UTD2042C/UTD3042C	40MHz	500MS/s
		UTD2062C/UTD3062C	60MHz	500MS/s
		UTD2082C/UTD3082C	80MHz	500MS/s
		UTD2102C/UTD3102C	100MHz	500MS/s
		UTD2152C/UTD3152C	150MHz	500MS/s
		UTD2202C/UTD3202C	200MHz	500MS/s
	UTD2000E/3000E	UTD2042CE/UTD3042CE	40MHz	1 GS/s
UTD2000/3000		UTD2062CE/UTD3062CE	60MHz	1 GS/s
		UTD2082CE/UTD3082CE	80MHz	1 GS/s
		UTD2102CE/UTD3102CE	100MHz	1 GS/s
		UTD2152CE/UTD3152CE	150MHz	1 GS/s
		UTD2202CE/UTD3202CE	200MHz	1 GS/s
	UTD2000L	UTD2025CL	25MHz	250MS/s
		UTD2052CL	50MHz	500MS/s
		UTD2052CEL	50MHz	1 GS/s
		UTD2102CEL	100MHz	1 GS/s

Model UTD2000/3000: NÁVOD K POUŽITÍ

Digitální osciloskop série UTD2000/3000 nabízí jednoduchý čelní panel s jasně označenými funkcemi pro všechny základní operace. Měřítko a umístění jednotlivých kanálů poskytuje intuitivní obsluhu tak, abyste využili své návyky při používání tradičních nástrojů. Uživatelé proto mohou používat přístroj bez nutnosti se složitě cokoliv učit a pracovat s přístrojem po dlouhou dobu. Pro urychlení nastavení a usnadnění měření můžete stisknout tlačítko AUTO. Vhodný průběh vlnění a nastavení řazení může být zobrazeno na ovládacím panelu.

Digitální osciloskop série UTD2000/3000 má také ukazatele vysokého výkonu a výkonné funkce pro rychlá měření a snadné použití. Rychlejší signály mohou být pozorovány na digitálním osciloskopu série UTD2000/3000 se vzorkováním v reálném čase 500MS/s (nebo 1GS/s) a ekvivalentním vzorkováním 25GS/s (nebo 50GS/s). Osciloskop umí zachytit a analyzovat průběh vlnění díky výkonné spoušti a kapacitě pro analýzu dat. Uživatelé také mohou sledovat a rychle analyzovat problémy díky LCD displeji s jasným a čistým obrazem a funkci pro matematické výpočty. Díky těmto parametrům může tato řada osciloskopů splnit Vaše požadavky na měření. Přehled vlastností přístroje:

- Dva analogové kanály
- Barevný LCD displej s vysokým rozlišením 320 x 240 (případně 800 x 480) obrazových bodů
- USB vstup s podporou Plug and play umožňující ukládání informací a komunikaci s počítačem
- Automatické nastavení průběhu signálu a stavu
- Ukládání průběhu signálu, bitové mapy a nastavení (včetně opětovného načtení uloženého průběhu signálu a nastavení)
- Propracovaná funkce přiblížení pro přesnou analýzu detailů a profilu průběhu signálu
- Automatické měření 28 parametrů průběhu signálu
- Automatické sledování kurzoru v průběhu měření
- Unikátní funkce záznamu a přehrávání průběhu signálu
- Vestavěná funkce Rychlé Fourierovy transformace (FFT)
- Integrované matematické funkce průběhu signálu (včetně +, -, x, ÷)
- Funkce spouštění hranou, video signálem, šířkou pulzu a střídavým signálem (ALT TRIG)
- Vícejazyčné menu displeje

Model UTD2000/3000: NÁVOD K POUŽITÍ

Příslušenství digitálního osciloskopu UTD2000/3000 s možností ukládání informací:

- 2 sondy s kabelem o délce 1,2 m (1:1/10:1), prohlášení o shodě se standardem EN61010-031:2008 naleznete v uživatelské příručce
- Uživatelská příručka k osciloskopu UTD2000/3000
- 1 napájecí kabel odpovídající normám platným v zemi použití
- 1 uživatelská příručka
- 1 záruční list
- Propojovací kabel USB: UT-D06 nebo UT-D05 Ovládací a komunikační software pro osciloskop řady UTD2000/3000

Model UTD2000/3000: NÁVOD K POUŽITÍ

Obsah

Název kapit	toly Si	trana
Všeobecné	bezpečnostní pokyny	
Předmluva		
Kapitola 1:	Návod k použití	1
	Všeobecná kontrola	1
	Kontrola funkcí	5
	Kompenzace sondy	7
	Automatické nastavení displeje zobrazení průběhu signálu	8
	Seznámení s vertikálním ovládacím systémem	8
	Seznámení s horizontálním ovládacím systémem	9
	Seznámení se systémem spouštění	11
Kapitola 2:	Nastavení přístroje	12
	Nastavení vertikálního ovládacího systému	12
	Nastavení horizontálního ovládacího systému	24
	Nastavení systému spouštění	27
	Nastavení systému vzorkování	39
	Nastavení systému zobrazení	42
	Ukládání a načítání informací	44
	Nastavení doplňkových funkcí	49
	Automatické měření	54
	Kurzorové měření	61
	Tlačítko spuštění / zastavení měření	63

Název kapi	toly Str	ana
Kapitola 3:	Příklady použití	. 64
	Příklad 1: Měření jednoduchých signálů	. 64
	Příklad 2: Měření zpoždění sinusových signálů procházejících obvodem	. 65
	Příklad 3: Zachycení jednoduchého signálu	. 66
	Příklad 4: Snížení úrovně náhodného šumu v signálu	. 67
	Příklad 5: Kurzorové měření	. 68
	Příklad 6: Použití funkce X-Y	. 69
	Příklad 7: Spouštění pomocí video signálů	. 70
	Příklad 8: Měření v zónách (detekce Pass/Fail)	. 71
	Příklad 9: Použití funkce aktualizace prostřednictvím U disku	. 72
	Příklad 10: Použití funkce ukládání	. 72
Kapitola 4:	Systémová hlášení a řešení problémů	. 75
	Přehled systémových hlášení	. 75
	Řešení problémů	. 75
Kapitola 5:	Technická specifikace	. 77
	Příloha A: Technická specifikace	. 77
	Příloha B: Příslušenství digitálního osciloskopu řady UTD2000/3000 s možností ukládání informací	. 89
	Příloha C: Údržba a čištění	. 89
Kontakty		. 90

Model UTD2000/3000: NÁVOD K POUŽITÍ

Kapitola 1: Návod k použití

Digitální osciloskopy série UTD2000/3000 jsou malé a šikovné stolní multimetry. Základní test lze provést tím jednoduše díky snadné obsluze přístroje. Osciloskopy série UTD2000/3000 nabízí jednoduchý přední panel pro jednoduché provedení základnách operací.

Panel také obsahuje knoflík a funkční tlačítka. Funkce knoflíku jsou podobné jako u jiných digitálních osciloskopů.

Kapitola pojednává o postupu při vykonávání následujících úkonů:

- ∆ Všeobecná kontrola
- $\Delta\,$ Kontrola funkcí
- $\Delta\,$ Kompenzace sondy
- $\Delta\,$ Automatické nastavení displeje pro zobrazení průběhu signálu
- △ Seznámení s vertikálním ovládacím systémem
- △ Seznámení s horizontálním ovládacím systémem
- $\Delta\,$ Seznámení se systémem spouštění

Všeobecná kontrola

Po zakoupení přístroje se před jeho vlastním použitím důkladně seznamte s obsluhou předního panelu. Tato kapitola se zaměřuje na seznámení s obsluhou a funkcemi předního panelu tak, aby se jej uživatel naučil co nejdříve ovládat. 5 tlačítek umístěných po pravé straně displeje slouží k ovládání menu. (shora dolů nesou označení F1 až F5) V některých nabídkách je možno s jejich pomocí nastavovat určité funkce. Ostatní tlačítka jsou funkční, lze pomocí nich vstupovat do určitých položek menu, nebo přímo aktivovat různé funkce.

1-1. Přední panel modelu přístroje s displejem o velikosti 5,7"

Model UTD2000/3000: NÁVOD K POUŽITÍ

1-2. Přední panel modelu přístroje s displejem o velikosti 7"

1-3. Ilustrační příklad okna zobrazení na digitálním osciloskopu (platí např. pro modelovou řadu UTD2000L)

Model UTD2000/3000: NÁVOD K POUŽITÍ

Doporučujeme po zakoupení přístroje provést následující kontrolu: 1. Zkontrolujte, zda nedošlo k poškození při přepravě. Pokud došlo k vážnému poškození papírového obalu, polystyrenu, nebo dalších výplňových materiálů, tak jej vyměňte.

2. Zkontrolujte dodané příslušenství podle seznamu v kapitole "Příslušenství digitálního osciloskopu UTD2000/3000 s možností ukládání informací" této uživatelské příručky. Ujistěte se, že příslušenství je kompletní a že nedošlo k jeho poškození. V případě problémů s příslušenstvím kontaktujte Vašeho lokálního prodejce, či distributora výrobků společnosti UNI-T.

3. Zkontrolujte celý přístroj a v případě podezření na poškození nebo nesprávnou funkci přístroje, či v případě nemožnosti dokončit výkonnostní test, se obraťte na Vašeho prodejce. Věnujte také prosím pozornost stavu přepravního obalu a neprodleně ohlaste poškození způsobená přepravou.

Kontrola funkcí

Po zakoupení přístroje doporučujeme provést rychlou kontrolu funkčnosti podle následujícího postupu:

1. Připojte napájecí kabel k přístroji.

Napájecí napětí je 100-240V AC, 45-440Hz. Frekvence je 45Hz až 440Hz. Zapněte přístroj a nechte jej 30 minut běžet, během této doby neprovádějte žádné operace. Po uplynutí 30ti minut je přístroj zahřátý na optimální teplotu, nyní stiskněte tlačítka [UTILITY] a [F1] a osciloskop se automaticky zkalibruje. Po ukončení procesu kalibrace stiskněte na další straně menu tlačítko [F1] tak, jak je vyobrazeno na obrázku 1-4. Tím dojde k obnovení výchozího továrního nastavení přístroje.

Funkční tlačítka

Obrázek 1-4

Model UTD2000/3000: NÁVOD K POUŽITÍ

Varování: Ujistěte se, že je přístroj řádně uzemněn!

2. Přístroj disponuje dvěma vstupními kanály signálu a také jedním vstupem pro externí spínání (EXT TRIG INPUT). Pro přivedení signálů na vstupy postupujte následovně:

Připojte sondu ke vstupnímu kanálu CH1 a nastavte pomocí přepínače její útlum na hodnotu 10x (viz obrázek 1-5)

Obrázek 1-5

Součinitel útlumu sondy je třeba nastavit také v přístroji. Nastavením součinitele útlumu dojde ke změně rozsahu vertikální stupnice přístroje, čímž zajistíte správné zobrazení amplitudy měřeného signálu. Stiskem tlačítka [F4] nastavte součinitel útlumu na hodnotu 10x.

Obrázek 1-6. Nastavení součinitele útlumu sondy na osciloskopu

3. Připojte sondu a zemnící vodič do odpovídajících konektorů a stiskněte tlačítko [AUTO]. Přístroj nyní po dobu několika sekund zobrazí obdélníkový signál s frekvencí 1kHz a amplitudou 3V tak, jak je zobrazeno na obrázku 1-7. Nyní stiskem tlačítka [OFF] deaktivujte kanál CH1, tlačítkem [CH2] aktivujte kanál CH2 a opakujte kroky 2 a 3.

Obrázek 1-7

Kompenzace sondy

Při prvním připojení sondy ke kterémukoli ze vstupů musí být provedeno nastavení kompenzace sondy. Pokud neprovedete nastavení kompenzace, může to mít za následek nepřesné výsledky měření.

Pro nastavení kompenzace sondy postupujte následovně:

1. Pomocí přepínače na sondě nastavte součinitel útlumu na hodnotu 10x, stejnou hodnotu nastavte také v přístroji, a připojte sondu ke vstupu CH1. Ujistěte se, že sonda je k přístroji řádně připojena. Hrot sondy nyní připojte k výstupu kompenzace sondy a zemnící vodič sondy připojte k uzemňovacímu konektoru pro kompenzaci. Aktivujte kanál CH1 a stiskněte tlačítko [AUTO].

2. Zkontrolujte zobrazený průběh signálu

Obrázek 1-8. Úprava kompenzace sondy

3. Pomocí izolovaného šroubováku otáčejte potenciometrem kondenzátoru umístěného na sondě až do okamžiku, kdy tvar signálu zobrazeného na osciloskopu bude odpovídat vzoru signálu s popisem "Správná kompenzace" na obrázku 1-8.

Varování: Pokud připojujete sondu ke zdroji vysokého napětí, nikdy se nedotýkejte neizolovaných částí sondy a vždy se ujistěte, že izolace není na žádném místě poškozena!

Automatické nastavení displeje pro zobrazení průběhu signálu

Přístroj disponuje funkcí automatického nastavení, pro dosažení optimálního zobrazení na základě charakteristiky vstupního signálu osciloskop automaticky nastavuje vertikální vychylovací součinitel, časovou základnu a režim spouštění. Režim automatického nastavení může být aktivován pouze za předpokladu, že frekvence měřeného signálu je \geq 50Hz a činitel využití periody (střída) je > 1%.

Postup při použití funkce automatického nastavení:

1. Přiveďte měřené signály na vstupní konektory přístroje.

2. Po stisku tlačítka [AUTO] přístroj automaticky nastaví vertikální vychylovací součinitel, časovou základnu a režim spouštění. Tyto hodnoty mohou být v případě potřeby později pro dosažení nejlepších výsledků zobrazení upraveny.

Seznámení s vertikálním ovládacím systémem

Následující obrázky zobrazují tlačítka a potenciometry určené pro ovládání systému vertikálního zobrazení. Obrázek 1-9 popisuje možnosti nastavení systému vertikálního zobrazení.

Vertikální ovládací panel displeje o velikosti 5,7"

Vertikální ovládací panel displeje o velikosti 7"

Obrázek 1-9. Ovládací panel systému vertikálního zobrazení

Model UTD2000/3000: NÁVOD K POUŽITÍ

1. Pro posun signálu ve vertikálním směru slouží potenciometr s nápisem POSITION. Symbol zemnění GND se při otáčení potenciometrem vertikálně posouvá spolu se signálem.

Tip pro měření

Pokud nastavíte vazbu vstupu na hodnotu DC, můžete snadno měřit DC složku signálu sledováním rozdílu mezi zobrazovaným průběhem a GND složkou signálu. Při nastavení vazby vstupu na hodnotu AC bude DC složka signálu odfiltrována. Tento režim je také vhodný pro zobrazení AC složky signálu s vysokou citlivostí.

Tlačítko [SET TO ZERO] slouží k vynulování vertikální pozice zobrazení signálu z analogových vstupů přístroje. Toto tlačítko nastavuje vertikální a horizontální posun a hodnotu zpoždění spouštění (HOLD OFF) na výchozí (střední) hodnoty.

Poznámka: U osciloskopů UTD2000L je hodnota zpoždění spouštění nastavena na 50% střední hodnoty.

2. Nyní zkuste změnit nastavení vertikálního zobrazení, informace o aktuálním nastavení naleznete ve stavovém řádku, který se nachází na obrazovce pod zobrazeným průběhem signálu. Změnu vertikálního rozsahu provedete prostřednictvím potenciometru [VOLT/ GRID], změny se opět projeví také ve stavovém řádku. Po stisknutí tlačítek [CH1], [CH2], [MATH] a [REF] dojde k zobrazení příslušného ovládací menu, značení a průběhu signálu. Spolu s tím se také mění informace zobrazené ve stavovém řádku.

Seznámení s horizontálním ovládacím systémem

Následující obrázky zobrazují jedno tlačítko a dva potenciometry určené pro ovládání systému horizontálního zobrazení. Naleznete zde popis možností nastavení systému horizontálního zobrazení.

Horizontální ovládací panel displeje o velikosti 5,7"

Horizontální ovládací panel displeje o velikosti 7"

Obrázek 1-10. Ovládací panel systému horizontálního zobrazení

Model UTD2000/3000: NÁVOD K POUŽITÍ

1. Pro změnu horizontální časové základny použijte potenciometr s nápisem [SCALE], informace o aktuálním nastavení naleznete ve stavovém řádku. Prostřednictvím potenciometru [SCALE] můžete nastavit hodnotu SEC/DIV časové základny, změny se projeví ve stavovém řádku. Rozsah horizontální rychlosti vzorkování je 2ns/dílek~ 50s/dílek v krocích 1 —2—5.

Poznámka: Možnosti nastavení rozsahu horizontální časové základny se pro jednotlivé modely osciloskopů řady UTD2000/3000 liší.

2. Pro posun signálu v horizontálním směru slouží potenciometr s nápisem POSITION. Tento potenciometr také slouží pro nastavení spouštění posuvu signálu. V případě použití funkce spouštění posuvu signálu je při otáčení potenciometrem [POSITION] patrná změna průběhu signálu.

3. Pro zobrazení menu přiblížení (Zoom menu) u 5,7" verze osciloskopu stiskněte tlačítko [MENU], u 7" verze stiskněte tlačítko [HORI MENU]. V menu přiblížení stiskněte tlačítko [F3] pro aktivaci rozšířeného zobrazení, pomocí tlačítka [F1] rozšířené zobrazení ukončíte a navrátíte se k hlavnímu zobrazení časové základny. V tomto menu je také možno nastavit čas zpoždění spouštění. Tlačítko [SET TO ZERO] slouží k nastavení horizontálního a vertikálního bodu spouštění posuvu signálu na výchozí (střední) hodnoty. Potenciometr POSITION na panelu nastavení horizontálního zobrazení slouží k horizontálnímu posuvu zobrazení průběhu signálu.

Vysvětlení pojmů

Trigger point: Označuje pozici aktuálního bodu spouštění vztaženou ke středovému bodu přístroje. Pomocí horizontálního potenciometru [POSITION] můžete nastavit horizontální pozici bodu spouštění.

Doba zpoždění spouštění: Označuje čas zpoždění před opětovnou aktivací funkce spouštění.

Čas zpoždění spouštění: můžete nastavit pomocí multifunkčního potenciometru.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Seznámení se systémem spouštění

Obrázek 1-11 zachycuje jeden potenciometr a tři (případně dvě) tlačítka umístěná na panelu ovládání funkce spouštění. Naleznete zde popis možností nastavení funkce spouštění.

Obrázek 1-11 Panel ovládacích prvků funkce spouštění lenu funkce spouštěr Obrázek 1-12 Menu funkce spouštění Při otáčení potenciometrem [LEVEL] umístěným na panelu ovládání funkce spouštění dochází k nastavení bodu spouštění a zároveň k jeho vertikálnímu posuvu na displeji. Informace o aktuálním nastavení naleznete ve stavovém řádku, který se nachází ve spodní části displeje.

2. Změnu nastavení spouštění může provést v TRIGGER MENU (viz obrázek 1-12).

Stisknutím tlačítka [F1] můžete nastavit režim spouštění hranou signálu.

Stisknutím tlačítka [F2] můžete nastavit zdroj spouštěcího signálu na kanál CH1.

Stisknutím tlačítka [F3] můžete nastavit režim spouštění na spouštění vzestupnou hranou signálu.

Stisknutím tlačítka [F4] můžete nastavit automatický výběr režimu spouštění. Stiskem tlačítka [F5] můžete nastavit vazbu spouštění na AC.

3. Stisknutím tlačítka [50%] u 5,7" verze osciloskopu, nebo [SET TO ZERO] u 7-palcové verze nastavíte bod spouštění do středu vertikální osy amplitudy signálu spouštění.

4. Stisknutím tlačítka [FORCE] vygenerujete jeden impuls spouštěcího signálu, čehož se převážně využívá v normálním a jednorázovém režimu spouštění.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Kapitola 2: Nastavení přístroje

Do této chvíle jste se předběžně seznámili s ovládáním systémů vertikálního a horizontálního zobrazení a s funkcí spouštění osciloskopů řady UTD2000/3000. Také byste měli být obeznámeni s principem fungování menu přístroje. Pokud se domníváte, že vaše znalost zmíněných postupů stále není dostatečná, přečtěte si znovu pečlivě Kapitolu 1.

Následující kapitola se zabývá těmito tématy:

- Nastavení vertikálních systémů [CH1], [CH2], [MATH], [REF], [OFF], [VERTICAL POSITION] a [VERTICAL SCALE]
- Nastavení horizontálních systémů [MENU] nebo [HOR MENU] a [HORIZONTAL POSITION] nebo [HORIZONTAL SCALE]
- Nastavení systémů spouštění [TRIGGER LEVEL], [MENU], [50%] a [FORCE]
- Nastavení vzorkovacího režimu [ACQUIRE]
- Nastavení režimu zobrazení [DISPLAY]
- Ukládání a načítání dat prostřednictvím funkce [STORAGE]
- Nastavení doplňkových funkcí [UTILITY]
- Automatické měření pomocí funkce [MEASURE]
- Kurzorové měření pomocí funkce [CURSOR]
- Použití spouštěcích tlačítek [AUTO] a [RUN/STOP]

Doporučujeme Vám si tuto kapitolu důkladně prostudovat, abyste se seznámili se širokými možnostmi měření a nastavení, které přístroj nabízí.

Nastavení vertikálního ovládacího systému

Nastavení kanálů CH1 a CH2. Každý kanál má své vlastní vertikální menu. Každá položka menu může být nastavena pro každý kanál zvlášť.

Na následující straně v tabulce 2-1 naleznete přehled možností nastavení jednotlivých položek menu. Nabídku pro příslušný kanál vyvoláte stiskem tlačítka [CH1] nebo [CH2].

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-1

Položka menu	Možnosti nastavení	Popis	
Párování	AC uzemnění	Odfiltruje DC složku vstupního signálu.	
	DC uzemnění	Je zobrazena DC i AC složka vstupního signálu. Odfiltruje AC i DC složku vstupního signálu.	
Omezení šířky	ON	Omezí šířku pásma na 20MHz pro snížení šumu zobrazeného signálu.	
pásma	OFF	Plná šířka pásma	
Volt/grid	Coarse tuning	Hrubé nastavení vychylovacího součinitele v krocích 1-2-5.	
	Fine tuning	Jemné nastavení vychylovacího součinitele pro dosažení lepšího rozlišení vertikálního zobrazení.	
Sonda	1X 10X 100X 1000X	K zachování správného součinitele vertikálního vychýlení vyberte hodnotu odpovídající součiniteli útlumu nastavenému na sondě. Je možno vybrat ze 4 hodnot: 1X, 10X, 100X a 1000X.	
Obrácení fáze	ON	Aktivuje funkci obrácení fáze signálu.	
	OFF	Průběh signálu je zobrazen normálně.	

1. Nastavení vazby kanálu

V následujících příkladech je ke vstupnímu kanálu CH1 přiveden signál se sinusovým průběhem, který obsahuje DC složku.

Stisknutím tlačítka [F1] nastavíme vazbu kanálu na hodnotu AC, čímž bude DC složka signálu odfiltrována. Výsledný signál bude mít následující průběh:

Obrázek 2-1. DC složka signálu je odfiltrována

Stisknutím tlačítka [F1] nastavíme vazbu kanálu na hodnotu DC, bude zobrazena DC i AC složka signálu přivedeného ke vstupu CH1. Výsledný signál bude mít následující průběh:

Obrázek 2-2. DC i AC složka signálu jsou zobrazeny zároveň

Stisknutím tlačítka [F1] nastavíme vazbu kanálu na režim uzemnění (GND), DC i AC složka signálu bude odfiltrována. Výsledný signál zobrazený na displeji bude mít následující průběh (viz obrázek 2-3):

Poznámka:

Ačkoli průběh signálu není v tomto režimu zobrazen, signál je stále přiveden ke vstupnímu kanálu.

Obrázek 2-3. DC i AC složka signálu jsou odfiltrovány

2. Nastavení omezení šířky pásma

V následujících příkladech je ke vstupnímu kanálu CH1 přiveden signál se sinusovým průběhem a frekvencí 40MHz. Stisknutím tlačítka [CH1] aktivujeme vstupní kanál CH1 a tlačítkem [F2] nastavíme omezení šířky pásma na hodnotu OFF. Šířka pásma vstupního signálu není omezena, všechny vysokofrekvenční složky měřeného signálu jsou tak zobrazeny. Výsledný signál bude mít následující průběh:

Obrázek 2-4. Průběh signálu při aktivní funkci omezení šířky pásma

Stisknutím tlačítka [F2] nastavíme omezení šířky pásma na hodnotu ON, vysokofrekvenční složky a šum nad 20MHz jsou ze signálu odfiltrovány. Výsledný signál bude mít následující průběh:

Obrázek 2-5. Průběh signálu při neaktivní funkci omezení šířky pásma

3. Nastavení dělícího poměru sondy

Nastavení útlumového faktoru sondy v provozním menu kanálu koordinuje s nastavením koeficientu útlumu sondy. Sonda musí být nastavena na 10*. Je-li sonda zeslabena na 10:01, musí být zajištěno správné napětí.

Rozsah vertikálního vychylovacího součinitele Volt/grid je možno nastavovat v režimu hrubého ladění (po krocích), nebo v režimu jemného ladění. Následující obrázek ilustruje nastavení vertikálního vychylovacího součinitele a dalších voleb přístroje při použití sondy s dělícím poměrem 10:1.

Obrázek 2-6. Nastavení součinitele útlumu sondy na přístroji

4. Nastavení rozsahu vertikálního vychylovacího součinitele volts/grid:

Rozsah nastavení vertikálního vychylovacího součinitele volts/grid v režimu hrubého ladění je 2mV/dílek~5V/dílek (případně 10V/dílek), nebo 1 mV/dílek~20V/dílek v krocích 1—2—5. V režimu jemného ladění lze vertikální vychylovací součinitel nastavovat plynule.

Obrázek 2-7. Hrubé a jemné ladění vertikálního vychylovacího součinitele

5. Funkce obrácení fáze průběhu signálu

Zobrazený signál je ve vztahu k základní rovině zobrazení obrácený o 180°. Obrázek 2-8 ilustruje zobrazení průběhu signálu při neaktivní funkci obrácení fáze signálu. Obrázek 2-9 ilustruje zobrazení průběhu signálu při aktivní funkci obrácení fáze signálu.

Obrázek 2-8. Průběh signálu při neaktivní funkci obrácení fáze signálu

6. Matematické funkce

Přístroj je schopen vykonávat s průběhy signálů přivedených na vstupy CH1 a CH2 následující matematické operace: +, -, x, ÷, FFT (Rychlá Fourierova transformace). Obrazovka matematických funkcí vypadá následovně:

Obrázek 2-10. Matematické funkce

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-2: Přehled matematických funkcí

Položka menu	Možnosti nastavení	Popis
Typ funkce	Matematická	+, -, X, ÷
Zdroj ogoćlu 1	CH1	Nastaví vstup zdrojového signálu 1 na hodnotu CH1.
Zuroj signalu i	CH2	Nastaví vstup zdrojového signálu 1 na hodnotu CH2.
	+	Zdroj signálu 1 + Zdroj signálu 2
Matematický	-	Zdroj signálu 1 - Zdroj signálu 2
operator	x	Zdroj signálu 1 x Zdroj signálu 2
	÷	Zdroj signálu 1 ÷ Zdroj signálu 2
Zdroj signálu 2	CH1	Nastaví vstup zdrojového signálu 2 na hodnotu CH1.
	CH2	Nastaví vstup zdrojového signálu 2 na hodnotu CH2.

Analýza frekvenčního spektra FFT

Pomocí funkce "Rychlé Fourierovy transformace" (FFT) je možno převést signály časové oblasti YT na signály frekvenční oblasti.

Funkce FFT je vhodná pro provádění následujících analýz:

- Měření harmonických složek signálu a zkreslení
- Zobrazení charakteristiky šumu v DC složce napětí
- Analýza oscilace

Tabulka 2-3: Možnosti nastavení funkce FFT

Položka Možnosti menu nastavení		Popis
Typ funkce	FFT	Matematická funkce FFT
Zdroj ogoćlu	CH1	Nastaví vstup zdrojového signálu na hodnotu CH1.
Zuroj signalu	CH2	Nastaví vstup zdrojového signálu na hodnotu CH2.
	Hanning	Nastaví typ časového okna na Hanning
Typ časového	Hamming	Nastaví typ časového okna na Hamming
okna	Blackman	Nastaví typ časového okna na Blackman
	Rectangle	Nastaví typ časového okna na obdélníkový
Dělení vertikální Vrms osy dBVrm		Nastaví dělení vertikální osy na hodnotu Vrms. Nastaví dělení vertikální osy na hod- notu dBVrms.

Tip pro měření za pomoci funkce FFT

Signály obsahující DC složku mohou způsobit chybu měření, nebo zobrazení průběhu FFT signálu. Pokud nastavíte vazbu vstupu signálu na hodnotu AC, DC složka signálu bude odfiltrována.

Pro zredukování náhodných šumů a tzv. frekvenčního aliasingu způsobeného opakovanými, či jednorázovými pulsy, nastavte režim sběru dat na Average (Průměrování).

Pokud se průběh signálu časové oblasti YT periodicky opakuje, funkce FFT osciloskopu převede do frekvenční oblasti pouze signál dané periody. Zobrazený signál YT bude mít v tomto případě na začátku a na konci stejnou amplitudu a jeho průběh bude spojitý. V případě diskrétního průběhu signálu časové oblasti YT, bude vlivem rozdílných amplitud vstupního signálu zobrazený signál nespojitý a v místech, kde navazuje, nebudou zobrazeny vysokofrekvenční složky signálu. Takový účinek na frekvenční doménu signálu se nazývá zeslabení. Vzniku tohoto jevu je možné částečně předejít vhodnou volbou typu časového okna, kdy je diskrétní signál určitým způsobem vynásoben tak, aby jeho počáteční a konečná amplituda začínala a končila vždy na horizontální ose zobrazení.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-4. Možnosti nastavení typu časového okna

Časové okno funkce FFT	Charakteristika	Nejvhodnější využití
Obdélníkové	Nejlepší rozlišení frekvence, nejhorší rozlišení amplitudy; podobný efekt jako by nebylo zvoleno žádné časové okno	Dočasné nebo krátké impulsy s podobnou úrovní signálu; Signály se sinusovým průběhem, podobnou amplitudou a frekvencí; Náhodný širokopásmový šum s pomalou variabilitou spektra
Hanning	Řádově lepší rozlišení frekvence v porovnání s obdélníko- vým časovým oknem, ale horší rozlišení amplitudy	Sinusové a cyklické signály; Úzkopásmový náhodný šum
Hamming	Rozlišení frekvence u Hammingova časového okna je nepatrně lepší, než u Hanningova	Dočasné nebo krátké impulsy s velkými rozdíly v úrov- ních signálu
Blackman	Nejlepší rozlišení amplitudy, nejhorší rozlišení frekvence	Používá se převážně u signálů s konstantní frekvencí pro hledání vyšších řádů harmonických složek

Model UTD2000/3000: NÁVOD K POUŽITÍ

Vysvětlení pojmů:

Rozlišení FFT: Rozlišení FFT je definováno jako součinitel vzorkovací frekvence a počtu výpočetních bodů. Zachováme-li počet výpočetních bodů, rozlišení FFT se bude spolu s klesající vzorkovací frekvencí zvyšovat.

Nyquistova frekvence: Původní signál nelze zrekonstruovat, jestliže vzorkovací frekvence není rovna alespoň dvojnásobku (2f) maximální frekvence (f), které dosahuje zdrojový signál. Tato podmínka je také známa jako Nyquistovo kritérium stability, kde "f" znamená Nyquistova frekvence a "2f" Nyquistova vzorkovací frekvence.

Referenční signály

U této funkce je možno použít dva referenční signály - RefA a RefB, jejichž průběhy lze načíst buď z nestabilní paměti osciloskopu (volba DSO v menu načtení), případně z externího U disku připojeného k přístroji. Pro načtení průběhu referenčního signálu, případně pro deaktivaci funkce postupujte následovně:

1. U modelů přístroje s velkostí displeje 5,7" stiskněte tlačítko [REF] umístěné na předním panelu přístroje. U 7" verze přístroje stiskněte tlačítko [STORAGE] a na druhé stránce nabídky zvolte funkci načtení "Call-out" (týká se např. řady UTD2000L). 2. Stiskněte tlačítko [RefA] pro výběr referenčního signálu A. Poté zvolte zdroj, ze kterého se má informace načíst a následně prostřednictvím multifunkčního potenciometru vyberte pozici, na které je informace uložena (rozsah pozic je 1-10, případně 1-20 u vyšších modelů přístroje).

Poté, co zvolíte pozici, ze které se má informace načíst, potvrďte načtení tlačítkem "Call-out". Pokud informace načítáte z externího U disku, je třeba jej nejprve k přístroji připojit. Informace je možno na-číst ze dvou zdrojů: DSO (vnitřní, nestabilní paměť přístroje) a USB (externí paměť).

Stiskněte tlačítko [F2] a vyberte USB (tato možnost je neaktivní až do okamžiku připojení U disku). Nyní dojde k načtení uloženého průběhu signálu a k jeho zobrazení na displeji. Po úspěšném načtení informací stiskněte tlačítko [F5] pro návrat do předchozí nabídky.

3. Pro výběr referenčního signálu B stiskněte tlačítko [RefB]. Dále postupujte jako v bodě 2. Nyní můžete při práci s FFT funkcí použít načtené referenční průběhy signálu. Stiskem tlačítka [REF] je možno zobrazit menu nastavení referenčních signálů, následující tabulka obsahuje přehled možností nastavení.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-5: Výběr pozice pro načtení

Položka menu	Možnosti nastavení	Popis
		Hodnoty 1~20 odpovídají 20ti pozicím pro uložení informací
Pozice uložení informace	1~20	Pro ukládání na USB disk je k dispozici 200 pozic (množství pozic pro ukládání do interní paměti se pro jednotlivé mode- ly osciloskopu liší)
	DSO (interní)	Nastaví ukládání do interní paměti.
Volba paměti pro ukládání	USB (externí)	Nastaví ukládání do externí paměti (tato volba je až do okamžiku připojení externího "U disku" neaktivní).
Deaktivace referenčního signálu		Deaktivuje načtený referenční signál
Načtení		Načte referenční signál z vybrané pozice úložiště
Storno		Návrat do předchozí nabídky

Při ukládání do interní paměti přístroje je možno vybrat z úložných pozic 1-20. Pro ukládání do externí paměti je třeba připojit U disk a stiskem tlačítka [F2] přepnout paměť pro ukládání na volbu USB. Nastavení ukládání průběhů signálů je možno změnit prostřednictvím menu STORAGE.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Nastavení horizontálního ovládacího systému

Potenciometr ovládání horizontálního systému

Potenciometr ovládání systému horizontálního zobrazení můžete použít k nastavení horizontálního měřítka (časové základny) a horizontální pozice bodu spouštění (bodu spouštění posuvu) zobrazených na RAM. Bod, kde se protínají vertikální a horizontální osa zobrazení, je výchozím bodem pro časový průběh signálu. Pro dosažení zvětšení, či zmenšení průběhu signálu relativně ke středu obrazovky může být horizontální měřítko zobrazení změněno. Horizontální pozice zobrazení průběhu signálu se také mění v závislosti na nastaveném bodu spouštění.

Úprava horizontální pozice zobrazení signálu: Slouží k úpravě horizontální pozice zobrazení průběhu signálu (včetně režimu Matematických funkcí). Citlivost nastavení závisí na nastavení časové základny.

Úprava horizontálního měřítka zobrazení signálu: Slouží k úpravě rozsahu hlavní časové základny (např. S/DIV). Je-li aktivní funkce rozšíření časové základny, můžete pomocí potenciometru měnit šířku okna a nastavovat zpoždění snímání časové základny. Pro bližší informace si přečtěte kapitolu Seznámení s funkcí rozšíření časové základny. Následující tabulka obsahuje možnosti nastavení systému horizontálního zobrazení: Tabulka 2-6

Položka menu	Možnosti nastavení	Popis	
Hlavní časová základna		 Aktivuje funkci hlavní časové základny 	
		 Umožňuje deaktivaci funkce rozšířeného zobrazení a návrat k hlavní časové základně 	
Rozšířené zobrazení		Aktivuje funkci rozšíření časové základny	
Zpoždění spouštění		Umožňuje nastavení doby zpoždění spouštění	

Model UTD2000/3000: NÁVOD K POUŽITÍ

Obrázek 2-11. Ovládací panel systému horizontálního zobrazení

Popis použitých symbolů:

- 1. Označuje pozici aktuálního zobrazovacího okna průběhu signálu v RAM
- 2. Označuje pozici bodu spouštění v RAM
- Označuje pozici bodu spouštění v aktuálním zobrazovacím okně průběhu signálu
- Označuje horizontální časovou základnu (případně hlavní časovou základnu), např. S/DIV
- Označuje horizontální vzdálenost bodu spouštění od středu zobrazení

Vysvětlení pojmů

Režim Y-T: Osa Y představuje napětí, osa X představuje čas

Režim X-Y: Osa X představuje napětí kanálu CH1, osa Y představuje napětí kanálu CH2

Režim pomalého vzorkování: Pokud je měřítko horizontální časové základny nastaveno na hodnotu 100ms/dílek nebo méně, přístroj se přepne do režimu pomalého vzorkování. Pokud je v takovém případě frekvence zobrazeného signálu příliš nízká, doporučujeme nastavit vazbu kanálu na režim DC.

S/DIV: V případě použití funkce zastavení vzorkování (pomocí tlačítka RUN/STOP) je možno pomocí potenciometru ovládání horizontálního zobrazení zvětšit, či zmenšit amplitudu zobrazeného průběhu signálu.

Funkce rozšířeného zobrazení

Funkce rozšířeného zobrazení slouží k pozorování detailů určité části průběhu signálu. Nastavené měřítko rozšířeného zobrazení nesmí být menší, než je měřítko hlavní časové základny.

Rozšířené zobrazení vybrané části průběhu signálu

Jak je patrné z obrázku vlevo, obrazovka je v režimu rozšířeného zobrazení rozdělena do dvou částí. Původní průběh signálu je zobrazen v horní části obrazovky. Oblast výběru části pro rozšířené zobrazení lze prostřednictvím potenciometru POSITION horizontálně posouvat, případně potenciometrem SCALE měnit její velikost.

Rozšířené zobrazení vybrané části průběhu signálu je umístěno ve spodní části obrazovky. Rozšířené zobrazení má ve srovnání se zobrazením původního průběhu signálu vyšší rozlišení. Uživatel může pomocí potenciometru SCALE měnit měřítko časové základny rozšířeného zobrazení.

Režim X-Y Tento režim lze použít pouze pokud jsou na oba vstupy CH1 i CH2 přivedeny signály.

Po aktivaci režimu X-Y bude napětí kanálu CH1 zobrazeno na ose X a napětí kanálu CH2 na ose Y.

Obrázek 2-13. Zobrazení průběhu signálu v režimu X-Y

Upozornění:

V běžném režimu X-Y přístroj automaticky vybírá nejvhodnější vzorkovací frekvenci pro měření. V souvislosti s tím také upravuje vertikální a horizontální měřítko zobrazení. Výchozí frekvence vzorkování je stanovena na 100MS/s, ta ovšem může být pro dosažení optimálního vykreslení Lissajousových obrazců automaticky snížena.

Následující funkce nejsou v režimu zobrazení X-Y aktivní:

- Režim automatického testování
- Režim kurzorového měření
- Matematické funkce a režim referenčních signálů
- Funkce rozšířeného zobrazení
- Funkce spouštění

Nastavení systému spouštění

V režimu spouštění osciloskop shromažďuje informace až do okamžiku splnění určené podmínky a poté zobrazí průběh signálu. Při správném nastavení je tak schopen vygenerovat průběh signálu i z nestabilních vstupních dat. Přístroj nejprve shromáždí data pro vykreslení průběhu nalevo od spouštěcího bodu. Shromažďování dat probíhá po celou dobu čekání na splnění spouštěcí podmínky. Po splnění podmínky začne přístroj shromažďovat data pro vykreslení průběhu napravo od spouštěcího bodu.

Panel ovládání funkce spouštění zahrnuje potenciometr pro ovládání úrovně spouštění a tlačítko aktivace menu nastavení spouštění [TRIG MENU]. Osciloskopy s displejem o velikosti 5,7" (například UTD2000L) nastaví po stisku tlačítka [SET TO ZERO] spouštěcí úroveň do poloviny maximální vertikální amplitudy signálu. Stiskem tlačítka [FORCE] můžete vynutit vygenerování jednoho impulsu spouštěcího signálu.

Úroveň spouštění: Nastaví napětí signálu tak, aby odpovídalo bodu spouštění.

50%: Nastaví spouštěcí úroveň na polovinu maximální vertikální amplitudy spouštěcího signálu.

FORCE: Vygenerujete jeden impuls spouštěcího signálu, čehož se převážně využívá v normálním a jednorázovém režimu spouštění.

TRIG MENU: Vyvolá menu nastavení funkce spouštění.
Model UTD2000/3000: NÁVOD K POUŽITÍ

Režim spouštění: Spouštění hranou, video signálem, šířkou pulzu a střídavým signálem (ALT TRIG)

Spouštění hranou: Ke spuštění dojde, pokud hrana signálu dosáhne nastavené úrovně. Spouštění šířkou pulzu: Ke spuštění dojde, jestliže šířka pulzu signálu dosáhne nastavené úrovně.

Spouštění video signálem: Spouští se řádkem, nebo polem video signálu (modely UTD2000L s výjimkou UTD2025CL tuto funkci nemají).

ALT TRIG (Střídavé spouštění): Používá se pro střídavé spínání dvěma nesourodými signály. Spouštění hranou: Ke spuštění dojde, jestliže zvolená hrana signálu (vzestupná, či sestupná) dosáhne nastavené úrovně.

Následující tabulka obsahuje možnosti nastavení režimu spouštění: (viz tabulka 2-7):

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-7

Položka menu	Možnosti nastavení	Popis
Typ spouštění	Hrana signálu	
	CH1	Nastaví kanál CH1 jako zdroj spouštěcího signálu
	CH2	Nastaví kanál CH2 jako zdroj spouštěcího signálu
Valha zdraja	EXT	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu
volba zdroje vstupního signálu	EXT/5	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu a pětinásobně ho zeslabí pro dosažení většího rozsahu úrovně spouštění
	Napětí v elektrické síti	Nastaví napětí v elektrické síti jako zdroj spouštěcího signálu
	Střídavý zdroj signálu	Střídavě nastavuje kanály CH1 a CH2 jako zdroje spouštěcího signálu
	Vzestupná	Nastaví spouštění vzestupnou hranou signálu
Typ hrany signálu	Sestupná	Nastaví spouštění sestupnou hranou signálu
	Vzestupná / Sestupná	Nastaví spouštění vzestupnou nebo sestupnou hranou signálu
	Automatický	Spustí záznam dat bez ohledu na splnění podmínky spuštění
Režim spouštění	Normální	Spustí záznam dat po splnění podmínky spuštění
	Jednorázové spuštění	Spustí záznam dat a po splnění podmínky ho ukončí
Párování	AC	Odfiltruje DC složku vstupního signálu
	DC	Je propuštěna DC i AC složka vstupního signálu
	Potlačení vysokých frekvencí	Potlačení vysokofrekvenčních složek signálu s frekvencí nad 80kHz
	Potlačení nízkých frekvencí	Potlačení nízkofrekvenčních složek signálu s frekvencí pod 80kHz

Spouštění šířkou pulzu

Zpoždění spouštění je v tomto režimu určeno nastavenou šířkou pulzu, funkce tak při správném nastavení umožňuje také detekci nestandardních pulzů (viz tabulky 2-8 a 2-9):

Tabulka 2-8 (první strana)

Položka menu	Možnosti nastavení	Popis
Typ spouštění	Šířka pulzu	
	CH1	Nastaví kanál CH1 jako zdroj spouštěcího signálu
	CH2	Nastaví kanál CH2 jako zdroj spouštěcího signálu
Valha zdraja	EXT	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu
vstupního signálu	EXT/5	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu a pětinásobně ho zeslabí pro dosažení většího rozsahu úrovně spouštění
	Napětí v elektrické síti	Nastaví napětí v elektrické síti jako zdroj spouštěcího signálu
	Střídavý zdroj signálu	Střídavě nastavuje kanály CH1 a CH2 jako zdroje spouštěcího signálu
	> nastavená hodnota	Ke spuštění dojde, jestliže šířka pulzu přesáhne nastavenou hodnotu
Podmínky spouštění šířkou pulzu	< nastavená hodnota	Ke spuštění dojde, jestliže je šířka pulzu menší,než nastavená hodnota
	= nastavené hodnotě	Ke spuštění dojde, jestliže je šířka pulzu rovna nastavené hodnotě
Rozsah nastavení šířky pulzu		Rozsah šířky pulzu je 20ns až 10s a je nastavitelný pomocí multifunkčního potenciometru umístěného v horní části předního panelu
Další strana nabídky 1/2		Přejde na další stranu nabídky

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-9 (druhá strana)

Položka menu	Možnosti nastavení	Popis
Typ spouštění	Šířka pulzu	
Polarita spouštěcího	Kladná polarita pulzu	Ke spuštění dojde, jestliže je polarita pulzu kladná
pulzu	Záporná polarita pulzu	Ke spuštění dojde, jestliže je polarita pulzu záporná
	Automatický	Spustí záznam dat a vykresluje průběh signálu bez ohledu na splnění pod- mínky spuštění, jestliže zaznamená spouštěcí signál, pokračuje v záznamu
Režim spouštění	Normální	Spustí záznam dat po splnění podmínky spuštění
	Jednorázové spuštění	Spustí záznam dat a po splnění podmínky ho ukončí
	AC	Odfiltruje DC složku spouštěcího signálu
Párování	DC	Je propuštěna DC i AC složka spouštěcího signálu
	Potlačení vysokých frekvencí	Potlačí vysokofrekvenční složky spouštěcího signálu, nízkofrekvenční složky signálu jsou propuštěny
Předchozí strana nabídky 2/2		Návrat na předchozí stranu nabídky

Spouštění video signálem

Tento režim umožňuje spouštění řádkem, nebo polem standardních video signálů norem NTSC, nebo PAL (model UTD2025CL touto funkcí nedisponuje). Vazba spouštění je přednastavena na hodnotu DC. Následující tabulka obsahuje přehled možností nastavení funkce spouštění video signálem (viz tabulka 2-10):

Položka menu	Možnosti nastavení	Popis
Typ spouštění	Video signál	
	CH1	Nastaví kanál CH1 jako zdroj spouštěcího signálu
	CH2	Nastaví kanál CH2 jako zdroj spouštěcího signálu
Volba zdroje	EXT	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu
vstupního signálu	EXT/5	Nastaví kanál EXT TRIG INPUT jako zdroj spouštěcího signálu a pětinásobně ho zeslabí pro dosažení většího rozsahu úrovně spouštění
	Střídavý zdroj signálu	Střídavě nastavuje kanály CH1 a CH2 jako zdroje spouštěcího signálu
Video standard	PAL	Nastaví standard vstupního video signálu na PAL
VIGEO Standard	NTSC	Nastaví standard vstupního video signálu na NTSC
Synchronizace	Všechny řádky	Nastaví synchronizaci na všechny řádky
	Pouze určitý řádek	Nastaví synchronizaci pouze na určitý řádek, který lze zvolit pomocí potenciometru na předním panelu
	Liché pole	Nastaví synchronizaci na lichá pole video signálu
	Sudé pole	Nastaví svnchronizaci na sudá pole video signálu

Tabulka 2-10

Na obrázku 2-14 je znázorněno použití režimu synchronizace řádkem a video standardu PAL. Obrázek 2-15 znázorňuje použití režimu synchronizace polem.

Obrázek 2-15

Režim střídavého spouštění (ALT TRIG)

V režimu střídavého spouštění (ALT TRIG) je vstupní signál snímán ze dvou vertikálních vstupů. Tento režim lze použít pro sledování dvou nesourodých signálů současně. Následující obrázek ilustruje zobrazení průběhu signálu v režimu střídavého spouštění.

Obrázek 2-16 Zobrazení průběhů 2 signálů s nesourodými průběhy a frekvencemi

Nastavení vazby vstupu v režimu spouštění

Pro dosažení nejlepších výsledků synchronizace můžete prostřednictvím menu spouštění nastavit vazbu vstupu. Následující tabulka obsahuje přehled možností nastavení vazby vstupu v režimu spouštění (viz tabulky 2-11 a 2-12):

Tabulka 2-11

Položka menu	Možnosti nastavení	Popis
Režim spouštění	Hrana signálu	Nastaví režim spouštění na spouštění hranou signálu
Zdroj spouštěcího signálu	Střídavé spouštění	Střídavě nastavuje kanály CH1 a CH2 jako zdroje spouštěcího signálu
Typ hrany signálu	Vzestupná	Nastaví režim spouštění na spouštění vzestupnou hranou signálu
Režim spouštění	Automatický	Nastaví režim spouštění na automatický
Párování	AC	Nastaví vazbu spouštění na hodnotu AC

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-12

Položka menu	Možnosti nastavení	Popis
Režim spouštění		
Zdroj spouštěcího signálu		
Typ hrany signálu		
Režim spouštění		
Párování	AC	Odfiltruje DC složku signálu
	DC	Všechny složky signálu jsou propuštěny
	Potlačení vysokých frekvencí	Potlačí vysokofrekvenční složky signálu, jen nízkofrekvenční složka je propuštěna
	Potlačení nízkých frekvencí	Potlačí nízkofrekvenční složku signálu, jen vysokofrekvenční složka je propuštěna

Nastavení zpoždění spouštění

Funkci zpoždění spouštění je možno využít pro pozorování složitých průběhů signálu (např. sérií řetězcových impulzů). Zpoždění spouštění je definováno jako doba, po kterou osciloskop po splnění podmínky vyčkává před aktivací dalšího cyklu spouštění. Přístroj v tomto stavu neprovede až do vypršení stanovené doby další spuštění.

Na obrázku 2-17 je uveden příklad, kdy má dojít ke spuštění prvním impulsem prvního řetězce ze série. Doba zpoždění v tomto případě odpovídá šířce jednoho řetězce.

Následující tabulka obsahuje přehled možností nastavení funkce zpoždění spouštění:

Tabulka 2-13

Položka menu	Nastavení	Popis
Hlavní časová základna		1. Aktivuje hlavní časovou základnu
		2. Deaktivuje funkci rozšířeného zobrazení a návrátí se k zobrazení hlavní časové základny
Funkce rozšířeného zobrazení		Aktivuje funkci rozšířeného zobrazení
Zpoždění spouštění		Nastavení času zpoždění spouštění

Obrázek 2-17

Postup při použití funkce

1. V nabídce TRIG MENU nastavte parametry spouštění hranou, zdroj signálu a režim spouštění. Poté upravte úroveň spouštění tak, abyste dosáhli stabilního zobrazení průběhu signálu.

2. Stiskem tlačítka [HORI MENU] můžete zobrazit menu nastavení horizontálního zobrazení.

3. Pomocí multifunkčního potenciometru v horní části předního panelu nastavte zpoždění spouštění tak, abyste dosáhli stabilního zobrazení průběhu signálu.

Vysvětlení pojmů

1. Zdroj spouštěcího signálu: Umožňuje výběr z mnoha zdrojů signálu spouštění, jmenovitě ze vstupních kanálů CH1 a CH2, externích vstupů EXT a EXT/5 a napětí v elektrické síti.

Vstupní kanál

Nejběžnějším typem vstupu pro signál spouštění je vstupní kanál, ten je aktivní i v případě, že nedochází k zobrazení jeho průběhu.

• Vstup externího signálu spouštění

Vstup externího signálu spouštění najde uplatnění například při současném záznamu průběhů signálů ze dvou vstupních kanálů. Jako zdroj externího signálu spouštění mohou být použity například externí hodiny nebo obvod. Aby mohly být využity vstupy EXT a EXT/5, musí být ke konektoru EXT TRIG připojen externí zdroj spouštěcího signálu.

Rozsah úrovně spouštění signálu připojeného k externímu vstupu může být -3V až +3V. U 5,7" verze osciloskopu je navíc k dispozici režim EXT/5, kdy je spouštěcí signál 5 x zeslaben, čímž je dosaženo většího rozsahu použitelné úrovně spouštění -15V až +15V.

Napětí v elektrické síti

Tento režim spouštění může být použit při zkoumání signálu souvisejícího s napětím v elektrické síti, například k dosažení synchronizace mezi světelným zařízením a jeho napájecím zdrojem.

Model UTD2000/3000: NÁVOD K POUŽITÍ

2. Režim spouštění:

Slouží k určení chování zařízení v případě, že nebyla splněna podmínka spuštění. K dispozici jsou tři režimy nastavení: automatické, normální a jednorázové spuštění.

• Automatický režim spouštění:

Přístroj zaznamenává data pro vykreslení průběhu signálu i za nepřítomnosti signálu spouštění. V případě, že je splněna podmínka spuštění, přejde do režimu normálního spouštění.

Upozornění: Záznam dat za nepřítomnosti spouštěcího impulzu je v režimu automatického spouštění možný pouze za předpokladu, že měřítko časové základny je nastaveno na hodnotu 5ms/ dílek, nebo méně.

• Normální režim spouštění:

V režimu normálního spouštění neprobíhá záznam dat až do okamžiku splnění podmínky spuštění. V tomto režimu je nutná přítomnost signálu spouštění na některém ze vstupů.

• Režim jednorázového spuštění:

Spuštění záznamu dat v tomto režimu musí uživatel provést stiskem tlačítka [OPERATION]. Přístroj poté začne zaznamenávat data a zobrazovat průběh signálu až do okamžiku, kdy bude splněna podmínka spuštění.

3. Vazba spouštění:

Nastavení vazby spouštění ovlivňuje, jaké složky spouštěcího signálu budu propuštěny do spouštěcího obvodu. K dispozici jsou následující nastavení: DC, AC, potlačení nízkých frekvencí a potlačení vysokých frekvencí.

- V režimu DC jsou všechny složky signálu propuštěny.
- V režimu AC jsou z DC složky signálu odfiltrovány všechny signály s frekvencí pod 400Hz.
- V režimu potlačení nízkých frekvencí jsou z DC složky signálu odfiltrovány všechny nízkofrekvenční signály s frekvencí pod 80kHz.
- V režimu potlačení vysokých frekvencí jsou z DC složky signálu odfiltrovány všechny vysokofrekvenční signály s frekvencí nad 80kHz.

4. Předspouštění / zpožděné spouštění:

Tento režim umožňuje záznam dat před, nebo po splnění podmínky spuštění. Bod spouštění je typicky nastaven do horizontálního středu obrazovky. Uživatel může zobrazit data v rozsahu 5 (případně 6) dílků základní osy před/po bodu spuštění. Pomocí potenciometru ovládání horizontálního zobrazení je možno měnit měřítko a zobrazit tak více detailů zaznamenaných dat. Tento režim je možno využít například pro odhalení příčin vzniku napěťových špiček v souvislosti se spuštěním obvodu - analýza dat zachycených před bodem spuštění může poskytnout cenné informace vedoucí k vyřešení problému.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Nastavení systému vzorkování

Následující obrázek zachycuje umístění funkčního tlačítka vzorkování [ACQUIRE] na ovládacím panelu.

Obrázek 2-18. Funkční tlačítko systému vzorkování

Uživatel může stiskem tlačítka ACQUIRE vyvolat menu nastavení vzorkování a zvolit režim vzorkování.

Tabulka 2-14.	Přehled	možností	nastavení	systému	vzorkování	
---------------	---------	----------	-----------	---------	------------	--

Položka menu	Možnosti nastavení	Popis
	Vzorkování	Aktivuje běžný režim vzorkování
Režim sběru dat	Detekce špičkových hodnot	Aktivuje režim detekce špičkových hodnot
	Průměrování	Aktivuje režim průměrování, zároveň je zpřístupněna funkce násobení průměru
Násobení průměru	2~256	Násobek průměru lze vybrat v krocích po mocninách čísla 2 (2, 4, 8, 16, 32, 64, 128 a 256). Nastavení se provádí stiskem levého multifunkčního potenciometru (Obrázek 2-18).
Režim vzorkování	Vzorkování v reálném čase	Aktivuje režim vzorkování v reálném čase
	Ekvivalentní vzorkování	Aktivuje režim ekvivalentního vzorkování
Režim rychlého sběru dat	ON	Aktivace / deaktivace režimu rychlého sběru dat - pro dosažení dynamičtějšího zobrazení průběhu signálu je nastavena vyšší obnovovací frekvence obrazovky.

Vzhled zobrazených průběhů signálu se mění v závislosti na zvoleném režimu sběru dat. Obrázky 2-19 a 2-20 ilustrují zobrazení průběhu signálu s vysokou úrovní šumu bez aktivního režimu průměrování a při aktivním režimu průměrování s násobkem 32.

Obrázek 2-19 Průběh signálu bez aktivního režimu průměrování

Obrázek 2-20. Průběh signálu při aktivním režimu průměrování a násobení průměru 32x

Poznámky:

- Při měření jednoduchého signálu zvolte režim vzorkování v reálném čase.
- Při měření vysokofrekvenčního periodického signálu zvolte režim ekvivalentního vzorkování.
- Při měření smíšeného signálu zvolte režim detekce špičkových hodnot, předejdete tím vzniku zkreslení skupinovým zpožděním. Pro redukci náhodných šumů v signálu nastavte režim sběru dat na průměrování (a případně zvolte násobek průměru v rozsahu 2 až 256).

Vysvětlení pojmů

Vzorkování v reálném čase: Data jsou shromážděna pouze jednou.

Ekvivalentní vzorkování: Sběr dat probíhá opakovaně - tento režim umožňuje detailní záznam periodicky se opakujících signálů. Je možno dosáhnout vyššího horizontálního rozlišení než při použití vzorkování v reálném čase.

Režim vzorkování: Režimy vzorkování je možno rozdělit na ekvivalentní režimy a režimy reálného času.

Režim detekce špičkových hodnot: Přístroj během každého intervalu vzorkování nalezne minimální a maximální hodnoty vstupního signálu a zobrazí jejich průběh. V případě, že úroveň šumu v signálu je nízká, je v tomto režimu možno zachytit také úzké impulsy.

Režim průměrování: V tomto režimu přístroj nejdříve v závislosti na nastaveném násobku průměru nasbírá data z několika intervalů průběhu signálu, spočítá jejich průměr a až poté zobrazí průběh signálu. Tohoto režimu lze využít pro snížení úrovně náhodného šumu v zobrazení signálu.

Nastavení systému zobrazení

Následující obrázek zachycuje umístění funkčního tlačítka zobrazení [DISPLAY] na ovládacím panelu.

Obrázek 2-21. Funkční tlačítko systému zobrazení

Uživatel může stiskem tlačítka [DISPLAY] vyvolat menu nastavení zobrazení a následně upravit vzhled zobrazení. Přehled možností nastavení zobrazení naleznete v následující tabulce.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Položka menu	Možnosti nastavení	Popis
Typ zobrazení	Vector point	Oblast mezi body vzorkování je vektorově propojena. Jsou zobrazeny pouze body vzorkování
Formát zobrozoní	ΥT	Standardní režim zobrazení osciloskopu (osa X představuje čas, osa Y napětí)
Formal zoprazem	XY	Režim zobrazení X-Y (osa X představuje signál na vstupu CH1, osa Y signál na vstupu CH2)
Doba obnovení zobrazení	Vypnuto	Zobrazení průběhu je obnovováno v reálném čase
	1s	K obnovení zobrazení průběhu signálu dojde po 1 sekundě
	2s	K obnovení zobrazení průběhu signálu dojde po 2 sekundách
	5s	K obnovení zobrazení průběhu signálu dojde po 5 sekundách
	Nekonečno	Původní průběh signálu je po dobu měření stále zobrazen na displeji, nová data jsou k aktuálnímu zobrazení přidávána
Jas zobrazení průběhu signálu	1% - 100%	Umožňuje nastavení jasu zobrazení průběhu signálu (modely UTD2000C/3000C touto funkcí nedisponují)

Tabulka 2-15 Přehled možností nastavení systému zobrazení

Ukládání a načítání informací

Následující obrázek zachycuje umístění funkčního tlačítka ukládání / načítání [STORAGE] na předním panelu.

Stiskem tlačítka [STORAGE] můžete vyvolat menu nastavení ukládání / načítání. Pro uložení průběhů signálů je k dispozici interní paměť přístroje, nebo externí U disk. Načíst uložené průběhy signálu můžete stiskem tlačítek RefA / RefB, uložené nastavení pak prostřednictvím tlačítka [STORAGE]. Průběhy signálu můžete také ukládat ve formě bitové mapy a to opět buď do interní paměti přístroje, nebo na externí U disk. Uložené soubory bitové mapy lze zobrazit pouze za pomoci počítače. Postup při použití funkce:

1. Stiskem tlačítka [STORAGE] zobrazíte menu pro výběr typu ukládaných dat. K dispozici jsou tři možnosti - průběh signálu, uložení nastavení a bitová mapa.

2. Tabulky 2-16 a 2-17 obsahuje přehled možností nastavení ukládání průběhu signálu. Po úspěšném uložení průběhu signálu ho můžete zpětně načíst jako referenční signál prostřednictvím tlačítka REF (bližší informace naleznete v části "Referenční signály" kapitoly 2 této příručky).

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-16. Menu uložení průběhu signálu

Položka menu	Možnosti nastavení	Popis
Typ ukládaných dat	Průběh signálu	Zvolí režim ukládání průběhu signálu a zobrazí příslušné menu
Zdroj signálu	CH1	Zvolí vstup CH1 jako zdroj signálu pro uložení
	CH2	Zvolí vstup CH2 jako zdroj signálu pro uložení
Pozice uložení informace	1~20	Z rozsahu 1-20 vyberte pozici pro uložení průběhu signálu Pro ukládání do externí paměti USB je k dispozici 200 pozic (množství pozic pro ukládání do interní paměti se pro jednotlivé modely osciloskopu liší)
Uložit		Uloží průběh signálu
Další strana nabídky) 1/2		Přejde na další stranu nabídky

Obrázek 2-23. Uložení průběhu signálu

Obrázek 2-24. Uložení průběhu signálu na externí U disk

Tabulka 2-17. Menu uložení průběhu signálu (pokračování tabulky 2-16)

Položka menu	Možnosti nastavení	Popis
Volba paměti pro ukládání	DSO (interní)	Nastaví ukládání do vnitřní, nestabilní paměti přístroje
	USB (externí)	Nastaví ukládání do externí paměti (tato možnost je neaktivní až do okamžiku připojení U disku)
	Běžný	Nastaví režim ukládání na "běžný" (data uložená na U disk v tomto režimu je možno použít pouze jako referenční signály ve funkci REF)
Režim ukládání	Dlouhodobé uložení	Nastaví režim ukládání na "dlouhodobé uložení" (Upozornění: Tato možnost je neak- tivní až do okamžiku připojení U disku, zpětné načtení dat z U disku je možné pouze za použití software pro komunikaci s počítačem, případně v režimu analýzy průběhu signálu)
Předchozí strana nabídky 2/2		Návrat na předchozí stranu nabídky

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-18 obsahuje přehled položek menu funkce uložení nastavení

Obrázek 2-25. Funkce uložení nastavení

Položka menu	Možnosti nastavení	Popis	
Funkce uložení nastavení		Zvolí typ ukládaných dat na "uložení nastavení"	
Pozice uložení informace	1~20	Pomocí multifunkčního potenciometru v horní části předního panelu vyberte z rozsahu 1-20 pozici pro uložení nastavení (množství pozic pro ukládání do interní paměti se pro jednotlivé modely osciloskopu liší)	
Uložení		Uloží nastavení	
Načtení		Načte uložené nastavení	

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-19 obsahuje přehled možností nastavení menu funkce uložení bitové mapy. Poznámka: Tato funkce je neaktivní, jestliže není připojen U disk.

Položka menu	Možnosti nastavení	Popis	
Funkce uložení bitmapy		Zvolí typ ukládaných dat "bitmapa"	
Pozice uložení informace	1-200	Pomocí multifunkčního potenciometru v horní části předního panelu vyberte z rozsahu 1-200 pozici pro uložení nastavení (u modelu UTD2000C je rozsah pouze 1-10)	
Uložení		Uloží bitovou mapu	

Obrázek 2-26. Uložení bitové mapy

Model UTD2000/3000: NÁVOD K POUŽITÍ

Nastavení doplňkových funkcí

Následující obrázek zachycuje umístění funkčního tlačítka doplňkových funkcí [UTILITY] na předním panelu.

Obrázek 2-27.

Umístění funkčního tlačítka doplňkových funkcí na předním panelu

Stiskem tlačítka [UTILITY] můžete vyvolat menu nastavení doplň-kových funkcí.

Tabulka 2-20. Přehled možností nastavení doplňkových funkcí

Položka menu	Možnosti nastavení	Popis
	Aktivovat funkci	Přístroj provede automatickou kalibraci
Automatická kalibrace	Deaktivovat funkci	Funkce automatické kalibrace je deaktivována, dojde k návratu na předchozí stranu
Měření s maskou	Možnosti nastavení jsou uvedeny v tabulce 2-23	Umožňuje nastavení masky (obalové zóny) průběhu pro použití s funkcí PASS/ FAIL (touto funkcí disponují pouze modely UTD2000E/3000E, UTD2025C/ 3025C a UTD2025CL)
Záznam průběhu signálu	Možnosti nastavení jsou uvedeny v tabulce 2-22	Umožňuje použití funkce záznamu průběhu signálu
Volba jazyka zobrazení	Je na výběr z mnoha jazyků	Nastaví jazyk zobrazení

Tabulka 2-21-1. Přehled možností nastavení doplňkových funkcí (pokračování)

Položka menu	Možnosti nastavení	Popis
Rychlá korekce	ON / OFF	Aktivuje / deaktivuje funkci rychlé korekce kanálů v rozsahu 2mV/dílek až 10mV/ dílek (tuto funkci mají pouze modely UTD2025C/3025C)
Vzhled uživatelského rozhraní	Vzhled 1 / 2 / 3 / 4	Umožňuje výběr ze čtyř typů vzhledu uživatelského rozhraní
Jas mřížky	1% -100%	Umožňuje nastavení jasu mřížky displeje pomocí multifunkčního potenciometru (modely UTD2000C/3000C touto funkcí nedisponují)
Další strana nabídky 2/3		Přejde na další stranu nabídky

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-21-2. Přehled možností nastavení doplňkových funkcí (pokračování)

Položka menu	Možnosti nastavení	Popis
Informace o systému		Zobrazí aktuální informace o systému osciloskopu
Měření frekvence		Aktivuje / deaktivuje funkci měření frekvence
První strana nabídky 3/3		Návrat na první stránku nabídky

Tabulka 2-22	. Přehled mo	ožností nastave	ení záznamu	průběhu	signálu
--------------	--------------	-----------------	-------------	---------	---------

Položka menu	Možnosti nastavení	Popis		
	CH1	Zvolí kanál CH1 jako zdroj signálu pro záznam		
Zdroj signálu	CH2	Zvolí kanál CH2 jako zdroj signálu pro záznam		
	CH1+CH2	Zvolí kanály CH1+CH2 jako zdroje signálu pro záznam		
	•	Pro spuštění záznamu stiskněte funkční tlačítko umístěné vedle symbolu • na obrazovce, údaj o délce záznamu je zobrazen ve spodní části obrazovky.		
		1. Tlačítko slouží k přehrání záznamu		
Ovládání záznamu	►	2. Pro přehrání záznamu stiskněte funkční tlačítko umístěné vedle symbolu ► na obrazovce, číslo přehrávaného snímku průběhu je zobrazen ve spodní části obrazovky. Pozastavit přehrávání a vybrat snímek obrazovky k přehrání můžete pomocí multifunkčního potenciometru umístěného v horní části předního panelu.		
		 Stiskněte tlačítko ■ pro zastavení přehrávání a následně ► pro přehrání záznamu od začátku 		
		Zastaví záznam/přehrávání		
Uložení	1~200	Uloží záznam průběhu signálu na připojený U disk, pozici pro uložení vyberte pomocí multifunkčního potenciometru		
Načtení 1~200		Načte záznam průběhu signálu z připojeného U disku, pozici pro načtení vyberte pomocí multifunkčního potenciometru		
Návrat		Návrat do předchozí nabídky		

Tabulka 2-23. Přehled možností nastavení funkce měření s maskou

Položka menu	Možnosti nastavení	Popis	
	Aktivní	Altivuje/dealtivuje indikátor překračení postovené mosky siznály	
indikator prekroceni masky	Neaktivní	Aktivuje/deaktivuje indikator prekročeni nastavene masky signalu	
	CH1	Zvolí kanál CH1 jako zdroj informací pro vyhodnocení	
	CH2	Zvolí kanál CH2 jako zdroj informací pro vyhodnocení	
Zdroj signálu	MATH	Zvolí výstup funkce MATH jako zdroj informací pro vyhodnocení	
	RefA	Zvolí referenční signál RefA jako zdroj informací pro vyhodnocení	
	RefB	Zvolí referenční signál RefB jako zdroj informací pro vyhodnocení	
	Pass	Při zachycení výsledku Pass (Vyhovuje) zobrazí informaci ve stavovém řádku	
	Pass/Halt	Při zachycení výsledku Pass zobrazí informaci ve stavovém řádku a zastaví testování	
Rezim vystupu detekce	Fail/Halt	Při zachycení výsledku Fail (Nevyhovuje) zobrazí informaci ve stavovém řádku a zastaví testování	
	Fail	Při zachycení výsledku Fail zobrazí informaci ve stavovém řádku	
Nastavení masky	Možnosti nastavení jsou uvedeny v tabulce 2-24	Vstup do menu nastavení masky	
Návrat		Návrat do předchozí nabídky	

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-24. Přehled možností nastavení masky

Položka menu	Možnosti nastavení	Popis
Nastavení masky	1	Nastavení horizontálního a vertikálního rozpětí masky pro použití s funkcí Pass/Fail
Horizontální rozpětí masky	1-200 pixelů	Nastavení horizontálního rozpětí masky
Vertikální rozpětí masky	1-100 pixelů	Nastavení vertikálního rozpětí masky
Návrat	1	Návrat do předchozí nabídky

Vysvětlení pojmů

Automatická kalibrace: Funkce automatické kalibrace slouží k nápravě chyby měření způsobené změnami v měřicím prostředí. Tato funkce může být spuštěna kdykoli je potřeba. K dosažení přesnější kalibrace před použitím funkce nejdříve přístroj zapněte a nechte ho po dobu 30ti minut zahřát. Funkce může být spuštěna v menu doplňkových funkcí (vyvoláte tlačítkem [UTILITY]).

Výběr jazyka zobrazení: Modelová řada UTD2000/3000 nabízí k výběru velké množství jazyků zobrazení. Stiskněte tlačítko [UTILITY] a zvolte jazyk zobrazení vyhovující Vašim potřebám.

Automatické měření

Následující obrázek zachycuje umístění funkčního tlačítka automatického měření [MEASURE] na předním panelu přístroje. S rozsáhlými možnostmi použití funkce automatického měření osciloskopů řady UTD2000/3000 se seznámíte v průběhu následující kapitoly.

Obrázek 2-28. Umístění funkčního tlačítka automatického měření na předním panelu

Příklady použití

Funkce automatického měření může být využita k měření až 28 parametrů průběhu signálu. Stiskem tlačítka [MEASURE] zobrazíte menu nastavení zobrazení naměřených hodnot, kde můžete aktivovat až 5 oblastí pro jejich zobrazení. Ke každé oblasti je přiřazeno jedno z funkčních tlačítek F1 až F5. Stiskem odpovídajícího funkčního tlačítka vyvoláte menu nastavení zobrazovaných hodnot pro danou oblast. Měřené hodnoty jsou rozděleny do 2 kategorií - napěťové a časové, pro pokračování vstupte do příslušné kategorie a pomocí tlačítek F1 až F5 zvolte měřenou hodnotu k zobrazení. Poté se vraťte zpět do předchozí nabídky. Stiskem tlačítka F5 můžete aktivovat zobrazení všech měřených parametrů z obou kategorií.

Tlačítko F2 slouží k volbě vstupního kanálu pro měření (ve výchozím nastavení je vstup z kanálů deaktivován). V případě, že si již nepřejete provádět další změny nastavení zobrazovaných hodnot, použijte k návratu do předchozí nabídky tlačítko F1.

Příklad 1:

Zobrazení špičkových hodnot signálu na vstupu CH2 v oblasti F1.

- Stiskem tlačítka [F1] vstupte do menu nastavení zobrazení naměřených hodnot v dané oblasti.
- 2. Stiskem tlačítka [F2] zvolte vstupní kanál CH2.
- 3. Stiskem tlačítka [F3] vyberte kategorii napěťových hodnot.
- Tlačítkem [F5] nalistujte druhou stranu výběru hodnot k zobrazení, na obrazovce vedle tlačítka [F3] bude zobrazena volba "Peak value" (Špičkové hodnoty).
- Stiskem tlačítka [F3] potvrďte volbu "Peak value", poté budete automaticky navráceni do menu nastavení zobrazení naměřených hodnot. Naměřené špičkové hodnoty signálu budou nyní zobrazeny na hlavní obrazovce v oblasti F1.

Příklad 2:

Měření zpoždění dvou signálů. Funkce měření zpoždění může být využita například pro měření intervalu mezi vzestupnými hranami dvou signálů, konkrétně mezi vzestupnou hranou prvního cyklu jednoho signálu a vzestupnou hranou prvního cyklu druhého signálu.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Postup měření je následující:

- Použijte postup uvedený v Příkladu 1 a nastavte zobrazení měřené hodnoty na volbu Delay (zpoždění), kterou naleznete na třetí straně výběru v kategorii časových hodnot.
- 2. Jako zdroj referenčního signálu zvolte kanál CH1.
- 3. Jako zdroj zpožděného signálu zvolte kanál CH2.
- Stiskem tlačítka F5 potvrďte nastavení a naměřené zpoždění bude zobrazeno ve vybrané oblasti hlavní obrazovky.

Automatické měření napěťových parametrů signálu

Osciloskopy modelové řady UTD2000/3000 umožňují automatické měření následujících napěťových parametrů signálu:

Špičkové hodnoty (Vpp): Napětí měřené od nejvyššího po nejnižší bod průběhu signálu

Nejvyšší napětí (Vmax): Napětí měřené od nejvyššího bodu průběhu signálu po bod zemnění (GND)

Nejnižší napětí (Vmin): Napětí měřené od nejnižšího bodu průběhu signálu po bod zemnění (GND)

Střední hodnota napětí (Vmid): Polovina součtu nejvyššího (Vmax) a nejnižšího (Vmin) napětí signálu.

Napětí amplitudy (Vamp): Rozdíl napětí mezi Vtop a Vbase.

Napětí plochy vrcholu (Vtop): Napětí měřené od plochy vrcholu průběhu signálu po bod zemnění (GND) - obvykle u obdélníkového průběhu signálu.

Napětí plochy základny (Vbase): Napětí měřené od plochy základny průběhu signálu po bod zemnění (GND) - obvykle u obdélníkového průběhu signálu.

Překmit: Je definován vztahem (Vmax-Vtop) / Vamp, měří se obvykle u obdélníkového tvaru signálu.

Předkmit: Je definován vztahem (Vmin-Vbase) / Vamp, měří se obvykle u obdélníkového tvaru signálu.

Průměr: Průměrná hodnota amplitud celého cyklu signálu.

Střední kvadratická hodnota napětí (Vrms): Efektivní hodnota střídavého napětí odpovídá průměrné hodnotě napětí stejnosměrného, které má v obvodu zatíženém rezistorem stejný průměrný výkon jako napětí střídavé.

Automatické měření časových parametrů signálu

Osciloskopy modelové řady UTD2000/3000 umožňují automatické měření následujících časových parametrů signálu: frekvence, trvání cyklu, doby trvání vzestupné hrany, doby trvání sestupné hrany, šířky kladného pulzu, šířky záporného pulzu, zpoždění (v devíti různých variantách), činitele využití kladných impulsů, činitele využití záporných impulsů a deseti dalších časových parametrů. Následuje popis jednotlivých časových parametrů signálu:

Rise Time: Doba, během které se amplituda signálu zvýší z 10% na 90%

Model UTD2000/3000: NÁVOD K POUŽITÍ

Fall Time: Doba, během které se amplituda signálu sníží z 90% na 10%

+Width: Šířka kladné poloviny periody signálu

-Width: Šířka záporné poloviny periody signálu

Delay ascending edge: Doba zpoždění mezi vzestupnou hranou jedné periody signálu a vzestupnou hranou následující periody signálu

Delay descending edge: Doba zpoždění mezi sestupnou hranou jedné periody signálu a sestupnou hranou následující periody signálu

+Duty: Poměr šířky kladného pulsu a doby trvání cyklu

-Duty: Poměr šířky záporného pulsu a doby trvání cyklu

Menu nastavení měření

Postup nastavení: Stiskem tlačítka [MEASURE] aktivujete režim měření, můžete vybrat až 5 měřených hodnot k zobrazení.

Tabulka 2-25 obsahuje přehled možností nastavení zobrazovaných hodnot, jednotlivé hodnoty zobrazované v dané oblasti lze vybrat po stisku příslušného tlačítka F1 až F5.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-25. Přehled možností nastavení zobrazovaných hodnot

Položka menu	Možnosti nastavení Popis	
Návrat		Návrat na obrazovku zobrazení naměřených hodnot
Zdroj signálu	CH1	Zvolí vstup CH1 jako zdroj signálu pro měření
	CH2	Zvolí vstup CH2 jako zdroj signálu pro měření
Voltage kind		Vstup do menu výběru napěťových parametrů k zobrazení
Time kind		Vstup do menu výběru časových parametrů k zobrazení
Všechny parametry		Aktivuje/deaktivuje zobrazení všech měřitelných parametrů signálu

Tabulky 2-26 až 2-29 obsahují podrobné možnosti nastavení zobrazení napěťových parametrů signálu.

Možnosti nastavení / zobrazovaný parametr	Popis
Návrat	Návrat do předchozí nabídky
Předkmit	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Napětí amplitudy	Funkce viz. výše
Překmit	Funkce viz. výše
Další strana nabídky 1/4	Přechod na další stranu

Tabulka 2-26. Přehled možností nastavení zobrazovaných hodnot

Tabulka 2-27. Přehled možností nastavení zobrazovaných hodnot (1/4)

Možnosti nastavení / zobrazovaný parametr	Popis
Předchozí strana nabídky	Návrat na předchozí stranu nabídky
Průměrná hodnota	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Špičková hodnota	Funkce viz. výše
Střední kvadratická hodnota napětí - Vrms	Funkce viz. výše
Další strana nabídky 2/4	Přejde na další stranu nabídky

Tabulka 2-28. Přehled možností nastavení zobrazovaných hodnot (2/4)

Možnosti nastavení / zobrazovaný parametr	Popis
Předchozí strana	Návrat na předchozí stranu nabídky
Napětí plochy vrcholu	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Napětí plochy základny	Funkce viz. výše
Střední hodnota napětí	Funkce viz. výše
Další strana nabídky 3/4	Přejde na další stranu nabídky

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-29. Přehled možností nastavení zobrazovaných hodnot (3/4)

Možnosti nastavení / zobrazovaný parametr	Popis
Předchozí strana nabídky	Návrat na předchozí stranu nabídky
Nejvyšší napětí	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Nejnižší napětí	Funkce viz. výše
První strana nabídky 4/4	Návrat na první stranu nabídky (tabulka 2-26)

Tabulky 2-30 až 2-32 obsahují podrobné možnosti nastavení zobrazení časových parametrů signálu.

Možnosti nastavení / zobrazovaný parametr	Popis
Návrat)	Návrat do předchozí nabídky
Frekvence	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Doba trvání cyklu	Funkce viz. výše
Doba trvání vzestupné hrany	Funkce viz. výše
Další strana nabídky 1/3	Přejde na další stranu nabídky

Tabulka 2-30. Možnosti nastavení zobrazení časových parametrů signálu

Tabulka 2-31. Přehled možností nastavení zobrazovaných hodnot (2/3)

Možnosti nastavení / zobrazovaný parametr	Popis
Předchozí strana nabídky	Návrat na předchozí stranu nabídky
Doba trvání sestupné hrany	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Šířka kladného pulzu	Funkce viz. výše
Šířka záporného pulzu	Funkce viz. výše
Další strana nabídky 2/3	Přejde na další stranu nabídky

Tabulka 2-32. Přehled možností nastavení zobrazovaných hodnot (3/3)

Možnosti nastavení / zobrazovaný parametr	Popis
Předchozí strana nabídky	Návrat na předchozí stranu nabídky
Zpoždění	Vstup do menu nastavení zpoždění (Tabulka 2-32a)
Činitel využití kladných impulsů	Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot
Činitel využití záporných impulsů	Funkce viz. výše
První strana nabídky 3/3	Návrat na první stranu nabídky (tabulka 2-30)

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-32a. Menu nastavení měření zpoždění

Položka menu	Možnosti nastavení	Popis
Kanál	CH1/CH2 /MATH	Zvolte vybraný kanál
Enter		Potvrdí volbu zobrazení vybraného parametru v dané oblasti a navrátí se na obrazovku zobrazení naměřených hodnot.

Kurzorové měření

Stiskem tlačítka [CURSOR] zobrazíte kurzor měření a menu nastavení kurzorového měření, pak můžete pomocí multifunkčního potenciometru upravit pozici kurzoru na obrazovce. Následující obrázek zachycuje umístění funkčního tlačítka kurzorového měření [CUR-SOR] na předním panelu.

Obrázek 2-29.

Umístění funkčního tlačítka kurzorového měření na předním panelu

V režimu CURSOR můžete nastavit pozici kurzoru pro měření. K dispozici jsou tři režimy - napětí, čas a sledování.

Pro měření ΔV napětí stiskněte tlačítka [SELECT] a [COARSE] a následně v průběhu měření nastavte pozice dvou zobrazených kurzorů pomocí multifunkčního potenciometru. Při měření času postupujte stejným způsobem. V případě použití režimu sledování kurzor automaticky kopíruje průběh měřeného signálu.

Poznámky:

Pro modely přístroje s displejem o velikosti 5,7" platí následující:

- 1. Tlačítko SELECT slouží pro výběr kurzoru.
- 2. Tlačítko COARSE slouží k nastavení rychlosti pohybu kurzoru.

Pro modely přístroje s displejem o velikosti 7" platí následující: Výběr kurzoru můžete provést stiskem multifunkčního potenciometru, pro nastavení rychlosti pohybu kurzoru multifunkčním potenciometrem otáčejte.

 Režim měření napětí/času: Dojde k současnému zobrazení jednoho nebo dvou kurzorů. Pozice kurzorů na obrazovce může být upravena pomocí multifunkčního potenciometru. Výběr kurzoru pro nastavení provedete prostřednictvím tlačítka SELECT (případně multifunkčním potenciometrem). Měření času, nebo napětí probíhá v oblasti mezi kurzory.

2. Režim sledování: Horizontální a vertikální mohou být vzájemně protnuty za účelem vytvoření křížového kurzoru. Křížový kurzor je automaticky umístěn na průběh signálu, jeho horizontální pozici na průběhu signálu lze případně upravit otáčením multifunkčního potenciometru. Přístroj také může současně zobrazovat souřadnice kurzoru.

3. Naměřená hodnota bude po vstupu do režimu kurzorového měření zobrazena v pravém horním rohu obrazovky.

Použití spouštěcího tlačítka [RUN/STOP]

Tlačítko [RUN/STOP] je umístěno v pravém horním rohu předního panelu přístroje. Po stisku tlačítka zelená stavová dioda indikuje stav "spuštění". Červená stavová dioda indikuje stav "zastavení".

Automatické nastavení

Funkce automatického nastavení slouží k usnadnění obsluhy přístroje. Po stisku tlačítka [AUTO] přístroj pro dosažení stabilního zobrazení automaticky zvolí podle amplitudy a frekvence aktuálního signálu nejvhodnější vertikální vychylovací součinitel a časovou základnu. Následující tabulka obsahuje přehled možností automatického nastavení.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Tabulka 2-33

Položka menu	Možnosti nastavení
Režim sběru dat	Režim sběru dat je nastaven Sampling (vzorkování)
Režim zobrazení	Režim zobrazení je nastaven na Y-T
Horizontální pozice zobrazení signálu	Horizontální pozice zobrazení signálu je nastavena na automatický režim
Měřítko časové základny s/dílek	Měřítko časové základny je automaticky upraveno s ohledem na frekvenci signálu
Párování	Párování je nastaveno na AC
Zpoždění spouštění	Zpoždění spouštění je nastaveno na nejnižší možnou hodnotu
Úroveň spouštění	Úroveň spouštění je nastavena do poloviny maximální vertikální amplitudy signálu
Režim spouštění	Je nastaven automatický režim spouštění
Zdroj spouštěcího signálu	Zdroj spouštěcího signálu je nastaven na kanál CH1, pokud zde není signál přítomen, je vybrán kanál CH2
Spouštění hranou	Spouštění hranou je nastaveno na vzestupnou hranu
Režim spouštění	Režim spouštění je nastaven na spouštění hranou signálu
Omezení vertikální šířky pásma	Omezení vertikální šířky pásma je nastaveno na hodnotu "All" - vypnuto
Nastavení vertikálního vychylovacího součinitele	Vertikální vychylovací součinitel je nastaven automaticky s ohledem na amplitudu signálu

Tlačítko spuštění / zastavení měření [RUN/STOP]

Tlačítko spouštění slouží k ovládání záznamu dat pro vykreslení průběhu signálu. Stiskem tlačítka lze spustit/zastavit proces vzorkování signálu. Po prvním stisku tlačítka zelená stavová dioda indikuje stav "spuštění", v horní části obrazovky je zobrazen nápis "Auto". Při dalším stisku tlačítka červená stavová dioda indikuje stav "Zastavení", v horní části obrazovky je zobrazen nápis "Stop".
Kapitola 3: Příklady použití

Příklad 1: Měření jednoduchého signálu

1) Rychlé zobrazení neznámého signálu ze vstupu a změření jeho frekvence a špičkových hodnot. Pro rychlé zobrazení signálu postupujte následovně:

1-1. Faktor útlumu sondy v menu přístroje nastavte na hodnotu 10x, útlum sondy nastavte pomocí přepínače také na hodnotu 10x.

1-2. Sondu připojte ke kanálu CH1 a přiložte ji k místu obvodu, kde chcete provádět měření.

1-3. Stiskněte tlačítko [AUTO].

Přístroj nyní pro dosažení nejlepších výsledků zobrazení průběhu signálu provede automatické nastavení. Nejste-li s výsledkem zobrazení spokojeni, můžete upravit vertikální a horizontální měřítko.

2) Automatické měření napěťových a časových parametrů signálu. Přístroj je schopen měřit většinu parametrů signálu automaticky. Pro měření frekvence a špičkových hodnot signálu postupujte následovně:

2-1. Stiskem tlačítka [MEASURE] vyvolejte menu nastavení automatického měření.

2-2. Stiskem tlačítka [F1] vstupte do menu výběru kategorie měřených hodnot. 2-3. Stiskem tlačítka [F3] zvolte kategorii napěťových parametrů.

2-4. Stiskem tlačítka [F5] nalistujte druhou stranu výběru měřených parametrů, tlačítkem [F3] potvrďte volbu "Peak value" (špičkové hodnoty).

2-5. Stiskem tlačítka [F2] vstupte do menu výběru kategorie měřených hodnot, poté tlačítkem [F4] zvolte kategorii časových parametrů.

Obrázek 3-1. Automatické měření

Příklad 2: Měření zpoždění sinusových signálů procházejících obvodem

Nastavte faktor útlumu v menu přístroje a pomocí přepínače na sondě stejným způsobem, jako v příkladu 1 (na hodnotu 10x). Vstup CH1 osciloskopu propojte se vstupním konektorem obvodu a vstup CH2 propojte s výstupním konektorem obvodu. Postup měření:

1) Zobrazení průběhů signálů na vstupech CH1 a CH2:

1-1. Stiskněte tlačítko [AUTO].

1-2. Pokud nejste s výsledkem zobrazení spokojeni, můžete upravit vertikální a horizontální měřítko.

1-3. Stiskněte tlačítko [CH1] a otáčením potenciometru ovládání vertikálního zobrazení upravte pozici zobrazení průběhu signálu na vstupu CH1.

1-4. Stiskněte tlačítko [CH2] a otáčením potenciometru ovládání vertikálního zobrazení upravte pozici zobrazení průběhu signálu na vstupu CH2. Dbejte přitom na to, aby se zobrazené signály nepřekrývaly.

2) Měření zpoždění sinusových signálů procházejících obvodem a následné sledování jejich průběhů.

2-1. Měření zpoždění sinusových signálů Stiskem tlačítka [MEASURE] vyvolejte menu nastavení automatického měření Stiskem tlačítka [F1] vstupte do menu výběru kategorie měřených hodnot.

Stiskem tlačítka [F4] zvolte kategorii časových parametrů.

Stiskem tlačítka [F5] nalistujte třetí stranu výběru měřených parametrů.

Stiskem tlačítka [F2] potvrďte volbu "Delay measurement" (měření zpoždění).

Stiskem tlačítka [F1] aktivujte vstupní kanál CH1.

Stiskem tlačítka [F2] aktivujte vstupní kanál CH2.

Stiskem tlačítka [F5] potvrďte nastavení. V oblasti F1 bude nyní zobrazena hodnota zpoždění signálů na vstupech CH1 a CH2.

2-2. Sledujte průběhy signálů (příklad zobrazení naleznete na následujícím obrázku)

Obrázek 3-2: Průběhy zpožděných signálů

Příklad 3: Zachycení jednoduchého signálu

Možnosti měření digitálním osciloskopem zahrnují mimo jiné snadné zachycení periodických signálů, jakými jsou například impulsy a napěťové špičky. Aby byl však přístroj schopen tyto signály zachytit, je zapotřebí správného nastavení spouštění - zejména úrovně spouštění a hrany signálu. Je-li například impulsem logický TTL signál, úroveň spouštění by měla být nastavena přibližně na 2V a hrana spouštění by měla být nastavena na nástupnou. Úroveň spouštění a hranu spouštění neznámého signálu je také možno zjistit za použití automatického, nebo běžného režimu spouštění.

Postup měření je následující:

1) Nastavení faktoru útlumu sondy a aktivaci vstupu CH1 proveďte způsobem popsaným v předchozích příkladech.

2) Nastavení spouštění:

2-1. Stiskem tlačítka [MENU] na panelu ovládání spouštění vyvolejte menu nastavení spouštění.

2-2. Typ spouštění nastavte na spouštění hranou, zdroj spouštěcího signálu na vstup CH1, typ spouštěcí hrany na vzestupnou, režim spouštění na jednorázové spuštění a vazbu spouštění na AC. Pro provedení nastavení použijte funkční tlačítka F1 až F5.

2-3. Pro dosažení vhodného zobrazení upravte horizontální a vertikální měřítko.

2-4. Potenciometrem TRIGGER LEVEL nastavte úroveň spouštění.

2-5. Stiskněte tlačítko [RUN/STOP] a vyčkejte na signál vyhovující podmínkám spuštění. Jakmile signál dosáhne nastavené úrovně spouštění, započne vzorkování a průběh signálu bude zobrazen na displeji. Za použití této funkce mohou být snadno zachyceny ojediněle se vyskytující jevy. Například: Náhlé napěťové špičky s velkou amplitudou - úroveň spouštění nastavte na mírně vyšší hodnotu, než u normálních signálů, stiskněte tlačítko [RUN/STOP] a vyčkejte na detekci. Přístroj automaticky po detekci napěťové špičky spustí záznam a zobrazí průběh před a po události. Pro zvětšení délky záznamu před vznikem napěťové špičky změňte pomocí potenciometru [POSITION], umístěného na panelu ovládání horizontálního zobrazení, horizontální pozici bodu spouštění. Dosáhnete tím většího záporného zpoždění záznamu průběhu.

Obrázek 3-3. Jednoduchý signál

Příklad 4: Snížení úrovně náhodného šumu v signálu

Nastavení osciloskopu je možné upravit tak, abyste snížili, nebo úplně zabránili přenosu náhodného šumu ze vstupního signálu do výstupu. Následující obrázek ilustruje průběh signálu s výskytem náhodného šumu:

Obrázek 3-4. Průběh signálu s výskytem náhodného šumu

Postup nastavení:

1. Nastavení faktoru útlumu sondy a aktivaci vstupu CH1 proveďte způsobem popsaným v předchozích příkladech.

2. Přiveďte signály na vstupy a nastavte horizontální a vertikální měřítko zobrazení. Použijte při tom postup popsaný v předchozích příkladech.

3. Pro dosažení lepších výsledků spouštění nastavte vhodnou vazbu spouštění.

3-1. Stiskem tlačítka [MENU] na panelu ovládání spouštění vyvolejte menu nastavení spouštění.

3-2. Nastavte vazbu spouštění na potlačení nízkých, či vysokých frekvencí signálu. V režimu potlačení nízkých frekvencí jsou z DC složky signálu odfiltrovány všechny nízkofrekvenční signály s frekvencí pod 80kHz, pouze vysokofrekvenční složka je propuštěna. V režimu potlačení vysokých frekvencí jsou z DC složky signálu odfiltrovány všechny vysokofrekvenční signály s frekvencí nad 80kHz, pouze nízkofrekvenční složka je propuštěna. Vyberte vhodné nastavení potlačení frekvenčních složek signálu tak, abyste dosáhli stabilního spouštění.

4. Potlačení zobrazovaného šumu nastavením režimu vzorkování.

4-1. Pokud měřený signál obsahuje náhodný šum, můžete aktivovat režim vzorkování Average (Průměrování). Zobrazený průběh signálu tak bude zbaven šumové složky, což usnadní jeho měření a sledování. Uvedené nastavení také zvýší možnosti analýzy detailů průběhu signálu.

Postup nastavení:

Stiskem tlačítka [ACQUIRE] vyvolejte menu nastavení vzorkování. Tlačítkem [F1] zvolte režim vzorkování Average (Průměrování). Nyní tlačítkem [F2] nastavte násobek průměru z rozsahu 2 až 256 (v krocích po mocninách čísla 2) tak, abyste dosáhli požadovaného efektu snížení úrovně šumu v signálu (viz následující obrázek 3-5).

Obrázek 3-5. Potlačení úrovně šumu v signálu

4-2. Potlačení zobrazovaného šumu snížením jasu průběhu signálu.

Poznámka: Při použiti režimu vzorkování průměrováním může dojít ke snížení obnovovací frekvence zobrazení.

Příklad 5: Kurzorové měření

Přístroj je schopen automaticky měřit 28 parametrů průběhu signálu. Všechny tyto parametry mohou být měřeny za pomoci kurzoru. Režim kurzorového měření umožňuje snadné měření časových a napěťových parametrů průběhu signálu. Měření napětí jednoho stupně stupňovitého signálu Při měření napětí jednoho stupně stupňovitého signálu postupujte následovně:

1. Stiskem tlačítka [CURSOR] zobrazíte menu nastavení kurzorového měření.

2. Tlačítkem [F1] nastavte typ kurzoru na napěťový.

3. Pomocí multifunkčního potenciometru nastavte pozici kurzoru na první stupeň stupňovitého signálu.

4. Stiskem tlačítka SELECT (případně stiskem multifunkčního potenciometru) aktivujte zobrazení druhého kurzoru a umístěte ho na začátek druhého stupně stupňovitého signálu. Hodnota rozdílu napětí ∆V je automaticky zobrazena v kurzorovém menu. Následující obrázek ukazuje zobrazení výsledků kurzorového měření.

Poznámka: Pro změnu režimu kurzorového měření na měření časových hodnot postupujte podle návodu výše a v bodě 2. změňte typ kurzoru na časový.

Obrázek 3-6. Měření rozdílu napětí signálu pomocí funkce kurzorového měření

Příklad 6: Použítí funkce X-Y

Měření fázového posuvu dvou signálů

Příklad: Fázový posuv signálů způsobený průchodem signálů obvodem. Připojte vstupy osciloskopu ke vstupu a výstupu měřeného obvodu. Pro měření fázového posuvu signálů pomocí funkce X-Y postupujte následovně:

1. Faktor útlumu sondy v menu přístroje nastavte na hodnotu 10x, útlum sondy nastavte pomocí přepínače také na hodnotu 10x.

 Ke vstupu CH1 připojte sondu, kterou následně připojte ke vstupu měřeného obvodu. Ke vstupu CH2 připojte sondu, kterou následně připojte k výstupu měřeného obvodu.

3. Jestliže nedojde ke zobrazení průběhů obou signálů, aktivujte stiskem tlačítek [CH1] a [CH2] příslušné vstupy.

4. Stiskněte tlačítko [AUTO].

5. Pomocí potenciometru ovládání vertikálního zobrazení nastavte přibližně stejné zobrazení amplitud obou signálů.

6. Stiskem tlačítka [DISPLAY] vyvolejte menu nastavení zobrazení.

7. Tlačítkem [F2] zvolte režim X-Y. Osciloskop nyní zobrazí vstupněvýstupní charakteristiku obvodu ve formě Lissajousových obrazců.

8. Upravte vertikální měřítko a pozici signálu tak, abyste dosáhli optimálního zobrazení. 9. Nyní pomocí návodu na následujícím obrázku vypočtěte fázový posuv signálu.

Pro výpočet platí vztah sin θ = A/B nebo C/D, kde " θ " je úhel fázového posuvu signálů. Obrázek 3-7 znázorňuje způsob určení hodnot A, B, C a D. Výpočet fázového posuvu je možné provést pomocí násle-

dujících vztahů: = ± arcsin (A/B) nebo = ± arcsin (C/D).

Vypočtený fázový posuv by se měl nacházet uvnitř Kvadrantu I nebo IV [jmenovitě $(0 \sim \frac{\pi}{2})$ nebo $(\frac{3\pi}{2} \sim 2\pi)$] jestliže se hlavní osa elipsy nachází uvnitř Kvadrantu I nebo III.

Vypočtený fázový posuv by se měl nacházet uvnitř Kvadrantu II nebo III [jmenovitě ($\frac{\pi}{2}$ ~ π) nebo (π ~ $\frac{3\pi}{2}$)], jestliže se hlavní osa elipsy nachází uvnitř Kvadrantu II nebo IV.

Signál musí být v horizontálním středu

Výše uvedený obrázek může také sloužit k výpočtu vztahu fázového posuvu a frekvence dvou signálů za předpokladu, že frekvence nebo fázový posuv těchto signálů je roven násobnému integrálu.

10. Formy fázového posuvu v režimu X-Y

Fázový	Poměr frekvencí signálů					
posuv	0°	45°	90°	180°	270°	360°
1:1	/	0	0	\backslash	0	/

Příklad 7: Spouštění video signálem

Funkcí spouštění video signálem disponují všechny modely kromě řady UTD2000L (model UTD2025CL funkci spouštění video signálem má). Pro stabilní zobrazení výstupu video obvodu je nutno správně nastavit režim spouštění video signálem.

Spouštění polem video signálu

Pro použití funkce spouštění video signálem postupujte následovně:

1. Stiskem tlačítka [MENU] na panelu ovládání spouštění vyvolejte menu nastavení spouštění.

- 2. Tlačítkem [F1] aktivujte režim spouštění video signálem.
- 3. Tlačítkem [F2] zvolte vstup CH1 jako zdroj spouštěcího signálu.
- 4. Tlačítkem [F3] zvolte standard video signálu PAL.

5. Tlačítkem [F4] zvolte synchronizaci lichým, nebo sudým polem videa.

6. Pomocí potenciometru SCALE nastavte měřítko časové základny tak, abyste dosáhli ideálního zobrazení průběhu signálu.

Obrázek 3-8. Spouštění polem video signálu

Spouštění řádkem video signálu

Pro použití funkce spouštění řádkem video signálu postupujte následovně:

1. Stiskem tlačítka [MENU] na panelu ovládání spouštění vyvolejte menu nastavení spouštění.

- 2. Tlačítkem [F1] aktivujte režim spouštění video signálem.
- 3. Tlačítkem [F2] zvolte vstup CH1 jako zdroj spouštěcího signálu.
- 4. Tlačítkem [F3] zvolte standard video signálu PAL.

5. Tlačítkem [F4] vyberte režim spouštění řádkem video signálu.

6. Otáčením multifunkčního potenciometru vyberte řádek video signálu, kterým se bude synchronizovat.

7. Pomocí potenciometru SCALE nastavte měřítko časové základny tak, abyste dosáhli ideálního zobrazení průběhu signálu.

Obrázek 3-9. Spouštění řádkem video signálu

Umístění výstupu signálu Pass/Fail

Výstup signálu Pass/Fail

Příklad 8: Detekce překročení masky (Pass/Fail)

Testuje, zda průběh signálu překročil nastavenou masku. Výsledek Fail znamená překročení masky, výsledek Pass znamená, že signál nastavenou masku nepřekročil. Signál indikující výsledek Pass/Fail je možno snímat na zadním výstupu přístroje.

1. Stiskněte tlačítko [UTILITY] a následně tlačítko [F2] pro vstup do menu nastavení funkce Pass/Fail.

 Výběr zdroje vstupního signálu: V menu nastavení funkce Pass/ Fail pomocí tlačítka [F2] vyberte zdroj vstupního signálu.

3. Nastavení masky: Stiskem tlačítka [F4] vstupte do menu nastavení masky (Template). Pomocí tlačítek [F2] a [F3] a pomocí multifunkčního potenciometru postupně nastavte horizontální a vertikální rozsah masky (1-200 obrazových bodů pro horizontální rozsah a 1-100 obrazových bodů pro vertikální rozsah). Pro návrat do menu nastavení funkce Pass/Fail stiskněte tlačítko [F4].

4. Nastavení režimu výstupu detekce: Pomocí tlačítka [F3] nastavte výstup detekce zobrazený na obrazovce funkce Pass/Fail.

5. Spuštění testování: Pomocí tlačítka [F1] aktivujte zobrazení stavu detekce na obrazovce funkce Pass/Fail.

Příklad 9: Použití funkce aktualizace prostřednictvím U disku

Aktualizace za pomoci U disku je výhodnější a flexibilnější, než jiné metody. Při použití této funkce postupujte podle následovně:

 Stáhněte aktualizační soubory z Internetu a umístěte je na U disk (pro dosažení optimálních výsledků používejte U disky doporučené výrobcem přístroje).

2. Vypněte přístroj, připojte U disk a přístroj opět zapněte.

3. Pokud se na U disku nachází pouze jeden aktualizační soubor, po zapnutí se objeví obrazovka s dotazem na potvrzení spuštění aktualizace. Stiskem tlačítka [F5] můžete aktualizaci potvrdit, nebo ji tlačítkem [F1] zrušit. Jestliže se na U disku nachází více než jeden aktualizační soubor, po zapnutí se objeví obrazovka s výběrem souboru aktualizace. Stiskem tlačítka [F5] můžete výběr aktualizace potvrdit, nebo jej tlačítkem [F1] zrušit. Po výběru aktualizačního souboru se objeví obrazovka s dotazem na potvrzení spuštění aktualizace. Stiskem tlačítka [F5] můžete aktualizaci potvrdit.

 Proces aktualizace se spustí, vyčkejte na zprávu o úspěšném dokončení. Pro dokončení procesu aktualizace vypněte a zapněte přístroj.

Poznámky:

Proces aktualizace trvá několik minut. Během aktualizace přístroj nevypínejte ani neodpojujte U disk, předejdete tak možnosti poškození přístroje! V případě selhání aktualizace přístroj vypněte a znovu ho zapněte pro opětovné spuštění aktualizace.

Příklad 10: Použití funkce ukládání

Možnosti funkce ukládání zahrnují ukládání nastavení, průběhu signálu, bitové mapy a u řady UTD2000 navíc specifické funkce uložení obsahu obrazovky.

Nastavení funkce ukládání

Pomocí funkce ukládání nastavení je možno uložit nastavení zdrojů pro zobrazení, zdrojů spouštění a vertikálního a horizontálního měřítka. Stiskem tlačítka [STORAGE] vyvoláte menu nastavení ukládání, poté tlačítkem [F1] zvolte typ ukládaných dat "Setup" (nastavení). Pomocí multifunkčního tlačítka vyberte pozici pro uložení a následně tlačítkem [F3] potvrďte uložení nastavení (následující obrázek ilustruje vzhled obrazovky funkce ukládání).

Obrázek 3-10. Obrazovka funkce ukládání

Během příštího měření můžete uložené nastavení vyzkoušet načíst, snížíte tak počet položek menu, které byste jinak byli nuceni znovu nastavit. Řada UTD2000C umožňuje uložení 10ti nastavení, řady UTD2000E a UTD2000L umožňují uložení až 20ti nastavení.

Funkce uložení průběhu signálu

Řada UTD2000 umožňuje uložení průběhu signálu. Stiskem tlačítka [STORAGE] vyvoláte menu nastavení ukládání, poté tlačítkem [F1] zvolte typ ukládaných dat "Waveform" (průběh signálu). Stiskem tlačítka [F2] vyberte zdroj signálu k uložení a tlačítkem [F5] přejděte na další stranu nabídky.

Menu "Magnetic disk" dostupné pod tlačítkem [F1] slouží k výběru paměti pro uložení. Pokud nepřipojíte U disk, výchozí nastavení je "DSO" - vnitřní paměť přístroje. Po připojení U disku jsou k dispozici volby "DSO" a "USB". Výchozí režim ukládání nastavitelný pomocí tlačítka [F2] je "Ordinary" (běžný), kdy mohou být uložená data zobrazena pouze pomocí osciloskopu.

Po připojení U disku a nastavení volby "Magnetic disk" na hodnotu "USB" můžete použít režim ukládání "Long storage" (dlouhodobé uložení), kdy přístroj na U disk uloží soubor s příponou .data, použitelný v dodávaném počítačovém software. Uložené průběhy signálu po načtení umožňují kompletní, detailní analýzu. Stiskem tlačítka [F5] je možno se vrátit do předchozí nabídky, pomocí multifunkčního potenciometru vybrat pozici pro ukládání, a tlačítkem [F3] potvrdit uložení.

Obrázek 3-11. Uložení průběhu signálu

Obrázek 3-12. Uložení průběhu signálu na externí U disk

Jak ukazuje obrázek 3-13, uložený průběh signálu může být u osciloskopů řady UTD2000C a UTD2000E rychle načten tlačítkem [REF]. U osciloskopů řady UTD2000L může uživatel uložená data načíst stiskem tlačítka [F3] na druhé straně nabídky STORAGE.

Obrázek 3-13. Vertikální ovládací panel přístrojů s displejem o velikosti 5,7"

Funkce uložení bitové mapy

Po úspěšném připojení U disku stiskem tlačítka [STORAGE] vyvolejte menu nastavení ukládání a následně tlačítkem [F1] zvolte typ ukládaných dat "bitmap" (bitová mapa). Následující obrázek ilustruje vzhled obrazovky funkce uložení bitmapy. Pomocí multifunkčního potenciometru vyberte pozici pro ukládání. Bitová mapa uložená na U disku v souboru s příponou ".BMP" může být přímo načtena pomocí počítače.

Obrázek 3-14. Uložení bitové mapy

Funkce vytvoření a uložení snímku obrazovky (PrtSc)

Osciloskopy řady UTD2000L mají v levém horním rohu obrazovky tlačítko PrtSc. Po připojení U disku je možno stiskem tlačítka PrtSc vytvořit snímek obrazovky. Snímek obrazovky lze uložit na U disk do souboru s příponou ".BMP".

Obrázek 3-15. Vytvoření snímku obrazovky

Model UTD2000/3000: NÁVOD K POUŽITÍ

Kapitola 4: Systémová hlášení a řešení problémů

Přehled systémových hlášení

Regulation to the extreme (rozsah regulace překročen): Informuje o tom, že multifunkčním potenciometrem byla v aktuálním režimu nastavena maximální hodnota a dále již není možné v regulaci pokračovat. Tato informace se může objevit při nastavování vertikálního vychylovacího součinitele, časové základny, posuvu osy x, horizontálního posuvu a úrovně spouštění.

Successful connection of U-disk (úspěšné připojení U disku): Tato informace se zobrazí, pokud je vložený U disk přístrojem v pořádku rozpoznán a načten.

Plug-out of U-disk (U disk byl odpojen): Tato informace se zobrazí po odpojení U disku od přístroje.

Saving (ukládání): Je-li právě ukládán průběh signálu, objeví se na obrazovce toto hlášení spolu s ukazatelem průběhu ukládání.

Loading (načítání): Je-li právě načítán průběh signálu, objeví se na obrazovce toto hlášení spolu s ukazatelem průběhu načítání.

Řešení problémů

1) Pokud při pokusu o zapnutí na přístroji zůstává pouze černá obrazovka, postupujte následovně:

1-1. Zkontrolujte, jestli je napájecí kabel správně připojen k přístroji.

1-2. Zkontrolujte, jestli je napájecí kabel správně připojen k elektrické zásuvce.

1-3. Poté, co jste zkontrolovali výše uvedené, se pokuste přístroj znovu zapnout.

1-4. Jestliže přístroj stále není možné zapnout, obraťte se na autorizovaný servis výrobků UNI-T.

Pokud při pokusu o měření přístroj nezobrazuje žádný průběh signálu, postupujte následovně:

2-1. Zkontrolujte, je-li sonda správně připojena ke vstupu přístroje.

2-2. Zkontrolujte, zda je kabel pro přivedení signálu na vstup správně připojen k BNC konektoru vstupu.

2-3. Zkontrolujte správné připojení sondy k měřenému obvodu.

2-4. Ujistěte se, že měřený obvod generuje měřitelné signály (obvody, které vykazují problémy s funkcí můžou být přístrojem diagnostikovány).

2-5. Pokuste se znovu o provedení měření.

Napěťová amplituda měřeného signálu je 10x větší /menší než skutečná hodnota.

Ověřte, že faktor útlumu nastavený přepínačem na sondě a v menu přístroje se shodují.

4) Pokud je zobrazení průběhu signálu nestabilní:

4-1. Ověřte, že zdroj signálu spouštění nastavený prostřednictvím menu nastavení spouštění se shoduje s fyzickým vstupem spouštěcího signálu.

4-2. Zkontrolujte typ spouštěcího signálu: Běžné signály by měly být spouštěny hranou signálu, video signály pak za použití režimu spouštění video signálem. Stabilního zobrazení průběhu signálu nemůže být dosaženo, pokud není správně nastaven režim spouštění.

4-3. Pro odstranění nízko-frekvenčního nebo vysoko-frekvenčního šumu v signálu nastavte vazbu spouštění na "Low-frequency inhibition" nebo "High-frequency inhibition".

5) Po stisku tlačítka [RUN/STOP key] není zobrazen žádný průběh signálu:

5-1. Zkontrolujte, zda je režim spouštění nastaven na normální, případně na jednorázové spuštění. Zkontrolujte, zda nastavená úroveň spouštění není mimo rozsah měřeného signálu. Úroveň spouštění by měla být nastavena zhruba do poloviny amplitudy měřeného signálu, případně by měl být zvolen režim spouštění AUTO.

5-2. Pro automatické provedení výše uvedeného nastavení stiskněte tlačítko AUTO.

6) V režimu vzorkování průměrováním došlo ke snížení obnovovací frekvence zobrazení.

6-1. Obnovovací frekvence zobrazení je vždy snížena, je-li násobek průměrování nastaven na hodnotu vyšší, než 32.

6-2. Pokuste se snížit násobek průměrování.

7) Zobrazený průběh signálu má stupňovitý charakter

7-1. Pokud je měřítko horizontální časové základny nastaveno na velmi nízkou hodnotu, pokuste se ho zvýšit za účelem zlepšení horizontálního rozlišení a zobrazení obecně.

7-2. Pokud je zvolený typ zobrazení "vector", může dojít vlivem propojení zobrazených vzorkovacích bodů k vykreslení stupňovitého průběhu signálu. Vyzkoušejte nastavit typ zobrazení na "Point", kdy budou zobrazeny pouze body vzorkování.

Model UTD2000/3000: NÁVOD K POUŽITÍ

Kapitola 5: Přílohy

Příloha A: Technická specifikace

Pokud není uvedeno jinak, jsou všechny technické specifikace osciloskopů řady UTD2000/3000 platné při nastavení faktoru útlumu sondy na hodnotu 10x. Aby byly všechny technické specifikace platné, musí být měření prováděno za následujících podmínek:

- Přístroj musí být před měřením zapnutý po dobu alespoň 30ti minut při dodržení konstantní teploty měřícího prostředí.
- Jestliže je rozdíl teplot měřícího prostředí větší, než 5°C, spusťte pomocí menu nastavení funkcí systému proces automatické kalibrace.
 Všechny uvedené rozsahy jsou garantovány s výjimkou těch, které mají přívlastek "typicky".

Technické údaje

Vzorkování					
	Režim vzorkování	Vzorkování v reálném čase	Ekvivalentní vzorkování		
	UTD2000C/3000C	500MS/s	25GS/s		
Vzarkovací frakvance	UTD2000E/3000E	1 GS/s	50GS/s		
	UTD2052CL	500MS/s	25GS/s		
	UTD2052CEL/UTD2102CEL	1GS/s	50GS/s		
Násobek průměrování	Hodnota N může být zvolena z rozsahu 2, 4, 8, 16, 32, 64, 128 a 256, průměrování poté probíhá pro každý kanál N-krát.				

Poznámka: U modelů UTD2025C, UTD3025C a UTD2025CL je vzorkovací frekvence 250MS/s, bez možnosti použití ekvivalentního vzorkování.

Nastavení vstupů			
Vazba vstupu	DC, AC, GND		
	UTD2000C/3000C: $1 \pm 2\% M\Omega$ při paralelním zapojení s $24\pm 3pF$		
Vstupní impedance	UTD2000E/3000E: 1 ± 2% MΩ při paralelním zapojení s 24±3pF (pro modely s maximální frekvencí 100MHz);1 ±2% MΩ při paralelním zapojení s 21±3pF (pro modely s maximální frekvencí 150MHz až 200MHz)		
	UTD2000L: 1 ± 2% M Ω při paralelním zapojení s 24±3pF		
Součinitel útlumu sondy	1x, 10x, 100x a 1000x		
Maximální vstupní napětí	400V (pro špičkové hodnoty DC + AC a vstupní impedanci 1 MΩ)		
(Typické) zpoždění dvou kanálů	150ps		

Horizontální zobrazení			
Interpolace průběhu signálu	Sin(x)/x		
Délka záznamu	2x 512k vzorkovacích bodů		
Paměť pro ukládání	25k vzorkovacích bodů (řada UTD2000C/3000C: 2.5k; řada UTD2025C/3025C: 4k)		
	UTD2000C/3000C: 2ns/dílek-50s/dílek (200MHz, 150MHz)		
Rozsah vzorkování	UTD2000E/3000E: 5ns/dílek-50s/dílek (100MHz, 80MHz, 60MHz a 40MHz); 20ns/dílek-50s/dílek (25MHz)		
Přesnost vzorkování a zpoždění	± 50ppm (pro jakýkoli interval o délce alespoň 1 ms)		
Přesnost měření (plná šířka pásma)	Jednorázové spuštění: ±(1 vzorkovací interval + 50ppm x naměřená hodnota + 0.6ns)		
pro interval (ΔT)	Násobek průměrování >16: ±(1 vzorkovací interval + 50ppm x naměřená hodnota + 0.4ns		

Vertikální zobrazení			
A/D převodník	Rozlišení 8-bit s možností vzorkování pro 2 kanály současně		
	UTD2000C/3000C/UTD2000E/3000E: 2mV/dílek~5V/dílek (na vstupu BNC)		
Rozsan výchýlovácho souchitele (v/dilek)	UTD2000L: 1 mV/dílek~20V/dílek (na vstupu BNC)		
Rozsah posuvu	±10 dílků (pro modely UTD2202E/3202E ± 5 dílků)		
(Typické) volitelné omezení šířky pásma	20MHz		
Nízkofrekvenční odezva (vazba AC, -3dB)	≤10Hz (na BNC)		
Přesnost zesílení DC	UTD2000C/UTD3000C, UTD2000E/UTD3000E: ± 4% jestliže vertikální citlivost je 2mV/dílek nebo 5mV/dílek ± 3% jestliže vertikální citlivost je 10mV/dílek až 5V/dílek		
(při použití vzorkování nebo vzorkování průměrováním)	UTD2000L: ± 5% jestliže vertikální citlivost je 1mV/dílek nebo 2mV/dílek ± 4% jestliže vertikální citlivost je 5mV/dílek ± 3% jestliže vertikální citlivost je 10mV/dílek až 20V/dílek		
Přesnost měření DC (při použití vzorkování průměrováním)	UTD2000C/UTD3000C, UTD2000E/UTD2000E: Pokud je vertikální posuv roven 0 a N≥16: ±(4% x naměřená hodnota + 0.1 mřížky + 1 mV) při zvolení 2mV/dílek nebo 5mV/dílek ±(3% x naměřená hodnota + 0.1 mřížky + 1 mV) při zvolení 10mV/dílek až 5V/dílek Pokud vertikální posuv není roven 0 a N ≥16: Pokud vertikální posuv není roven 0 a N ≥16: ± [(3%x (naměřená hodnota + hodnota vertikálního posuvu)+(1% x hodnota vertikálního posuvu)] + 0,2dílku. Pokud nastavujete 5mV/dílek až 200mV/dílek, připočtěte 2mV: Pokud nastavujete 200mV/dílek až 20V/dílek, připočtěte 50mV.		

Model UTD2000/3000: NÁVOD K POUŽITÍ

Přesnost měření DC (při použití vzorkování průměrováním)	UTD2000L: Pokud je vertikální posuv roven 0 a N≥16: ±(5% x naměřená hodnota + 0.1 mřížky + 1 mV) při zvolení 1mV/dílek nebo 2mV/dílek ±(4% x naměřená hodnota + 0.1 mřížky + 1 mV) při zvolení 5mV/dílek ±(3% x naměřená hodnota + 0.1 mřížky + 1 mV) při zvolení 10mV/dílek až 20V/dílek Pokud vertikální posuv není roven 0 a N ≥16: ± [(3%x (naměřená hodnota + hodnota vertikálního posuvu)+(1% x hodnota vertikálního posuvu)] + 0,2dílku. Pokud nastavujete 5mV/dílek až 200mV/dílek, připočtěte 2mV: Pokud nastavujete 200mV/dílek až 20V/dílek, připočtěte 50mV.
Přesnost měření rozdílu napětí (ΔV) (při použití vzorkování průměrováním)	Rozdíl napětí mezi jakýmikoli dvěma body umístěnými na průběhu signálu za předpokladu uskutečněného výpočtu průměrné hodnoty alespoň 16ti průchodů signálu za použití stejného nastavení a podmínek měření: ±(3% x naměřená hodnota + 0,05 dílku)

Poznámka: Rozsah vychylovacího součinitele modelů UTD2025C/3025C je 2mV/dílek~ 10V/dílek (při použití vstupu BNC).

Šířka pásma					
Modelová řada	Model	Analogová šířka pásma	Jednoduchá šířka pásma	Náběh	
	UTD2025C UTD3025C	25MHz	25MHz	14ns	
	UTD2042C UTD3042C	40MHz	40MHz	8.7ns	
	UTD2062C UTD3062C	60MHz	60MHz	5.8ns	
UTD2000C/3000C	UTD2082C UTD3082C	80MHz	80MHz	4.3ns	
	UTD2102C UTD3102C	100MHz	100MHz	3.5ns	
	UTD2152C UTD3152C	150MHz	100MHz	2.3ns	
	UTD2202C UTD3202C	200MHz	100MHz	1.8ns	
	UTD2042CE, UTD3042CE	40MHz	40MHz	8.7ns	
	UTD2062CE, UTD3062CE	60MHz	60MHz	5.8ns	
	UTD2082CE, UTD3082CE	80MHz	80MHz	4.3ns	
01D2000E/3000E	UTD2102CE, UTD3102CE	100MHz	100MHz	3.5ns	
	UTD2152CE, UTD3152CE	150MHz	100MHz	2.3ns	
	UTD2202CE, UTD3202CE	200MHz	100MHz	1.8ns	
	UTD2025CL	25MHz	25MHz	14ns	
	UTD2052CL	50MHz	50MHz	7ns	
	UTD2052CEL	50MHz	50MHz	7ns	
	UTD2102CEL	100MHz	100MHz	3.5ns	

Spouštění				
Citlivost spouštění	≤1 dílek			
	Interní	±5 dílků od středu obrazovky		
Rozsah úrovně spouštění	EXT	±3V		
	EXT/5 *	±15V		
(Typická) citlivost úrovně spouštění pro signál.	Interní	±(0,3 dílku X V/dílek) (v rozpětí ±4 dílku od středu obrazovky)		
u kterého doba trvání nástupné a sestupné	EXT	±(6% nastavené hodnoty + 40mV)		
hrany není nižší, než 20ns	EXT/5 *	±(6% nastavené hodnoty + 200mV)		
Pre-trigger ability	Normální režim/režim vzorkování, předspuštění/zpožděné spuštění s nastavitelnou hloubkou předspuštění			
Rozsah zpoždění	UTD2000C/3000C/UTD2000E/3000E: 100ns-1,5s UTD2000L: 80ns-1,5s			
(Typické) nastavení úrovně na 50%	Jestliže frekvence vstupního signálu není nižší než 50Hz.			
Spouštění hranou				
Typ hrany Vzestupná a sestupná		estupná, vzestupná a sestupná (model UTD2000C nemá režim "vzestupná		
Spouštění šířkou pulzu				
Režim spouštění	Více/méně ne	Více/méně než stejná jako kladná/záporná šířka pulzu		
Rozsah šířky pulzu	20ns-10s (Modely UTD2025/3025: 40ns-25s)			

Spouštění video signálem*				
Citlivost spouštění (typická pro spouštění video signálem)	Interní	Špičková hodnota 2 dílky		
	EXT	400mV		
	EXT/5*	2V		
Frekvence signálu a řádku/pole video signálu (režim spouštění video signálem)	Podporuje standardy NTSC a PAL; Rozsah výběru řádku je 1-525 (NTSC) a 1-625 (PAL)			
ALT TRIG (Střídavé spouštění):				
Spouštění vstupem CH1	Hrana, šířka pulsu, video signál			
Spouštění vstupem CH2	Hrana, šířka pulsu, video signál			

Měření			
Kurzor	Režim ručního měření	Rozdíl napětí (ΔV) mezi kurzory Rozdíl času (ΔT) mezi kurzory Obrácená hodnota ΔT (1/ΔT)	
	Režim sledování	Napětí a čas bodu na průběhu signálu	
		V režimu automatického měření může být zobrazen kurzor	
Režim automatického měření	Špičková hodnota, amplituda, maximální hodnota, minimální hodnota, hodnota plochy vrcholu, hodnota plochy základny, střední hodnota, průměrná hodnota, střední kvadratická hodnota, překmit, předkmit, frekvence, cyk- lus trvání vzestupné hrany, trvání sestupné hrany, šířka kladného pulzu, šířka záporného pulzu, činitel využití kladných impulsů, činitel využití záporných impulsů a zpoždění		
Matematické funkce	+, -, X, ÷		
Ukládání průběhu signálu	UTD2000C/3000C: 10 pozic pro průběhy signálu a 10 pozic pro nastavení UTD2000E/3000E/UTD2000L: 20 pozic pro průběhy signálu a 20 pozic pro nastavení		
FFT	Typ časového okna	Hanningovo / Hammingovo / Blackmanovo / Obdélníkové	
	Body vzorkování	1024 bodů	
Lissajousovy obrazce	Fázový posuv ±3 stupně		

Měření frekvence spouštění*				
Rozlišení čtení	6-bit			
Citlivost spouštění	≤30Vrms			
(Typická) přesnost	±51ppm (+1 WORD)			

Obecné technické specifikace

Displej				
	UTD2000C/3000C/UTD2000E/3000E	UTD2000L		
Typ displeje	Úhlopříčka o délce 145 mm (5,7")	Úhlopříčka o délce 178mm (7")		
Rozlišení displeje	320 (horizontálních) x RGB x 240 (vertikálních obrazových bodů)	800 (horizontálních) xRGBx480 (vertikálních obrazových bodů)		
Typ displeje	Barevný			
Jas zobrazení průběhu signálu*	Nastavitelný (barevný)			
(Typická) úroveň podsvícení	300nit			
Kategorie jazyka zobrazení	Výběr z mnoha jazyků zobrazení			

Poznámka*:

Modelová řada UTD2000C/3000C nemá funkci měření frekvence spouštění (s výjimkou modelů UTD2025C/3025C), tato řada také nemá regulaci jasu zobrazení průběhu signálu.

Výstup kompenzace sondy				
(Typické) výstupní napětí	Přibližně 3 V jestliže špičková hodnota není nižší, než 1M Ω			
(Typická) frekvence	1kHz			

Funkce uživatelského rozhraní	í
Standardní konfigurace	UTD2000C/3000C/UTD2000E/3000E: 1 USB (D); 1 USB (H); UTD2000L: 1 USB OTG
Volitelné příslušenství	Řada UTD2000C a UTD2000E/3000E: LAN
	Řada UTD3000C: GPIB a LAN (Pro model UTD3025C může být vybrána pouze LAN)

Napájení				
Napájecí napětí	100-240 VAC RMS, 45-440Hz, kat. II			
Spotřeba energie	< 30VA			
	F1.6AL 250V			
	Řada UTD2000/UTD2000E má pojistky umístěny na napájecí desce uvnitř přístroje.			
Pojistka	Řada UTD3000/UTD3000E má pojistky umístěny u přívodu napájení.			
	Řada UTD2000L má pojistky umístěny na napájecí desce uvnitř přístroje.			

Prostředí				
Dezech tenlet	Provozní: 0°C ~ +40°C			
Ruzsan teplot	Skladovací: -20°C ~ +60°C			
Metoda chlazení	Aktivní chlazení pomocí ventilátoru			
Rozsah vlhkosti	< 35°C: ≤ 90%			
	+35°C ~ +40°C: ≤ 60%			
Nadmořská výška	Provozní nadmořská výška < 3000m			
	Skladovací nadmořská výška < 15 000m			

Rozměry přístroje						
		UTD2000C UTD2000E	UTD3000C UTD3000E	UTD2000L		
Rozměry	Šířka	320 mm	320 mm	306 mm		
	Výška	150 mm	150 mm	147 mm		
	Hloubka	130 mm	292 mm	122 mm		
Hmotnost	Bez přepravního obalu	2,5 kg	4,9 kg	2,2 kg		
	Včetně přepravního obalu	4,0 kg	6,8 kg	3,3 kg		

Stupeň IP odolnosti	
IP2X	

Interval kalibrace

Doporučený interval kalibrace je 1 rok

Model UTD2000/3000: NÁVOD K POUŽITÍ

Příloha B:

Příslušenství digitálního osciloskopu řady UTD2000/3000

Standardní příslušenství přístroje:

- 2 pasivní sondy s kabelem o délce 1,2 m (1:1/10:1), prohlášení o shodě se standardem EN61010-031:2008 naleznete v uživatelské příručce
- 150V kat. II, pokud je přepínač na sondě v pozici 1x;
- 300 V kat. II, pokud je přepínač na sondě v pozici 10x;
- 1 napájecí kabel odpovídající normám platným v zemi použití
- 1 uživatelská příručka
- 1 záruční list
- komunikační software pro osciloskopy řady UTD2000/3000

Typy propojovacích USB kabelů: UTD2000C/3000C/2000E/3000E: UT-D06 UTD2000L: UT-D05

Volitelné příslušenství:

- Řada UTD2000C/2000E: modul LAN: UT-M01
- Řada UTD3000C/3000E: modul LAN: UT-M05
- Řada UTD3000C: GPIB modul: UT-M02

Veškeré příslušenství (standardní i volitelné) můžete zakoupit u Vašeho prodejce výrobků společnosti UNI-T.

Příloha C: Údržba a čištění

Obecná údržba

Je zakázáno přístroj skladovat nebo používat po dlouhou dobu na přímém slunci.

Poznámky: Přístroj ani sonda nesmí přijít do kontaktu s tekutinami, rozpouštědly ani obsahem čistících sprejů, může dojít k poškození!

Čištění

Pokud přístroj používáte, věnujte neustále pozornost tomu, zda správně funguje. Při čištění povrchu přístroje postupujte následovně:

- Lehké znečištění přístroje nebo měřící sondy očistěte měkkým hadříkem. Při čištění povrchu LCD displeje dbejte na to, abyste jej nepoškrábali.
- Silnější znečištění můžete odstranit pomocí lehce navlhčeného měkkého hadříku, přístroj však před čištěním vždy vypněte!
- Pro navlhčení hadříku použijte čistou vodu, nebo slabý roztok s čistícím prostředkem.
- K čištění je zakázáno používat jakýchkoli agresivních chemických čistidel, hrozí poškození sondy, nebo přístroje!

Varování: Před opětovným zapnutím přístroje po čištění se ujistěte, že povrch přístroje je dokonale suchý, v opačném případě hrozí riziko vzniku zkratu, nebo ohrožení zdraví!

Informace obsažené v této uživatelské příručce mohou podléhat změně bez předchozího upozornění.

Kontakty

Výhradní zastoupení pro Českou republiku a Slovensko:

TIPA, spol. s r.o. Sadová 2749/42, 746 01 Opava

tel.: +420 553 624 404 +420 553 759 096

e-mail: info@tipa.eu http: //www.tipa.eu